
 

 
 
Inside the C++ Object Model focuses on the underlying mechanisms that support object-oriented 
programming within C++: constructor semantics, temporary generation, support for encapsulation, 
inheritance, and "the virtuals"-virtual functions and virtual inheritance. This book shows how your 
understanding the underlying implementation models can help you code more efficiently and with greater 
confidence. Lippman dispells the misinformation and myths about the overhead and complexity associated 
with C++, while pointing out areas in which costs and trade offs, sometimes hidden, do exist. He then 
explains how the various implementation models arose, points out areas in which they are likely to evolve, 
and why they are what they are. He covers the semantic implications of the C++ object model and how that 
model affects your programs. 

Highlights  

Explores the program behavior implicit in the C++ Object Model's support of object-oriented 
programming.  

Explains the basic implementation of the object-oriented features and the trade offs implicit in those 
features.  

Examines the impact on performance in terms of program transformation.  

Provides abundant program examples, diagrams, and performance measurements to relate object-
oriented concepts to the underlying object model.  

If you are a C++ programmer who desires a fuller understanding of what is going on "under the hood," then 
Inside the C++ Object Model is for you! 
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Preface 

For nearly a decade within Bell Laboratories, I labored at implementing C++. First it was on cfront, Bjarne 
Stroustrup's original C++ implementation (from Release 1.1 back in 1986 through Release 3.0, made 
available in September 1991). Then it was on what became known internally as the Simplifier, the C++ 
Object Model component of the Foundation project. It was during the Simplifier's design period that I 
conceived of and began working on this book. 

What was the Foundation project? Under Bjarne's leadership, a small group of us within Bell Laboratories was 
exploring solutions to the problems of large-scale programming using C++. The Foundation was an effort to 
define a new development model for the construction of large systems (again, using C++ only; we weren't 
providing a multilingual solution). It was an exciting project, both for the work we were doing and for the 
people doing the work: Bjarne, Andy Koenig, Rob Murray, Martin Carroll, Judy Ward, Steve Buroff, Peter Juhl, 
and myself. Barbara Moo was supervising the gang of us other than Bjarne and Andy. Barbara used to say 
that managing a software group was like herding a pride of cats. 

We thought of the Foundation as a kernel upon which others would layer an actual development environment 
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for users, tailoring it to a UNIX or Smalltalk model as desired. Internally, we called it Grail, as in the quest 
for, etc. (It seems a Bell Laboratories tradition to mock one's most serious intentions.) 

Grail provided for a persistent, semantic-based representation of the program using an object-oriented 
hierarchy Rob Murray developed and named ALF. Within Grail, the traditional compiler was factored into 
separate executables. The parser built up the ALF representation. Each of the other components (type 
checking, simplification, and code generation) and any tools, such as a browser, operated on (and possibly 
augmented) a centrally stored ALF representation of the program. The Simplifier is the part of the compiler 
between type checking and code generation. (Bjarne came up with the name Simplifier; it is a phase of the 
original cfront implementation.) 

What does a Simplifier do between type checking and code generation? It transforms the internal program 
representation. There are three general flavors of transformations required by any object model component: 

1. Implementation-dependent transformations. These are implementation-specific aspects and vary 
across compilers. Under ALF, they involved the transformations of what we called "tentative" nodes. 
For example, when the parser sees the expression  

fct();  

it doesn't know if this is (a) an invocation of a function represented or pointed to by fct or (b) the 
application of an overloaded call operator on a class object fct. By default, the expression is 
represented as a function call. The Simplifier rewrites and replaces the call subtree when case (b) 
applies. 

2. Language semantics transformations. These include constructor/destructor synthesis and 
augmentation, memberwise initialization and memberwise copy support, and the insertion within 
program code of conversion operators, temporaries, and constructor/destructor calls. 

3. Code and object model transformations. These include support for virtual functions, virtual base 
classes and inheritance in general, operators new and delete, arrays of class objects, local static class
instances, and the static initialization of global objects with nonconstant expressions. An 
implementation goal I aimed for in the Simplifier was to provide an Object Model hierarchy in which 
the object implementation was a virtual interface supporting multiple object models. 

These last two categories of transformations form the basis of this book. Does this mean this book is written 
for compiler writers? No, absolutely not. It is written by a (former) compiler writer (that's me) for 
intermediate to advanced C++ programmers (ideally, that's you). The assumption behind this book is that 
the programmer, by understanding the underlying C++ Object Model, can write programs that are both less 
error prone and more efficient. 
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What Is the C++ Object Model? 

There are two aspects to the C++ Object Model: 

1. The direct support for object-oriented programming provided within the language 

2. The underlying mechanisms by which this support is implemented 

The language level support is pretty well covered in my C++ Primer and in other books on C++. The second 
aspect is barely touched on in any current text, with the exception of brief discussions within [ELLIS90] and 
[STROUP94]. It is this second aspect of the C++ Object Model that is the primary focus of this book. (In that 
sense, I consider this text to form a book-end to my C++ Primer, much as my MFA and MS degrees provide a
"fearful symmetry" to my education.) The language covered within the text is the draft Standard C++ as of 
the winter 1995 meeting of the committee. (Except for some minor details, this should reflect the final form 
of the language.) 
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The first aspect of the C++ Object Model is invariant. For example, under C++ the complete set of virtual 
functions available to a class is fixed at compile time; the programmer cannot add to or replace a member of 
that set dynamically at runtime. This allows for extremely fast dispatch of a virtual invocation, although at 
the cost of runtime flexibility. 

The underlying mechanisms by which to implement the Object Model are not prescribed by the language, 
although the semantics of the Object Model itself make some implementations more natural than others. 
Virtual function calls, for example, are generally resolved through an indexing into a table holding the address
of the virtual functions. Must such a virtual table be used? No. An implementation is free to introduce an 
alternative mechanism. Moreover, if a virtual table is used, its layout, method of access, time of creation, and 
the other hundred details that must be decided, are all decisions left to each implementation. Having said 
that, however, I must also say that the general pattern of virtual function implementation across all current 
compilation systems is to use a class-specific virtual table of a fixed size that is constructed prior to program 
execution. 

If the underlying mechanisms by which the C++ Object Model is implemented are not standardized, then one 
might ask, why bother to discuss them at all? The primary reason is because my experience has shown that if
a programmer understands the underlying implementation model, the programmer can code more efficiently 
and with greater confidence. Determining when to provide a copy constructor, and when not, is not 
something one should guess at or have adjudicated by some language guru. It should come from an 
understanding of the Object Model. 

A second reason for writing this book is to dispel the various misunderstandings surrounding C++ and its 
support of object-oriented programming. For example, here is an excerpt from a letter I received from 
someone wishing to introduce C++ into his programming environment: 

I work with a couple of individuals who have not written and/or are completely unfamiliar with 
C++ and OO. One of the engineers who has been writing C code since 1985 feels very strongly 
that C++ is good only for user-type applications, but not server applications. What he is saying 
is to have a fast and efficient database level engine that it must be written in C compared to 
C++. He has identified that C++ is bulky and slow. 

C++, of course, is not inherently bulky and slow, although I've found this to be a common assumption among
many C programmers. However, just saying that is not very convincing, particularly if the person saying it is 
perceived as a C++ partisan. This book is partially an attempt to lay out as precisely as I can the kinds of 
overhead that are and are not inherent in the various Object facilities such as inheritance, virtual functions, 
and pointers to class members. 

Rather than answering the individual myself, I forwarded his letter to Steve Vinoski of Hewlett-Packard, with 
whom I had previously corresponded regarding the efficiency of C++. Here is an excerpt from his response: 

I have heard a number of people over the years voice opinions similar to those of your 
colleagues. In every case, those opinions could be attributed to a lack of factual knowledge 
about the C++ language. Just last week I was chatting with an acquaintance who happens to 
work for an IC testing manufacturer, and he said they don't use C++ because "it does things 
behind your back." When I pressed him, he said that he understood that C++ calls malloc() 
and free() without the programmer knowing it. This is of course not true. It is this sort of 
"myth and legend" that leads to opinions such as those held by your colleagues…. 

Finding the right balance [between abstraction and pragmatism] requires knowledge, 
experience, and above all, thought. Using C++ well requires effort, but in my experience the 
returns on the invested effort can be quite high. 

I like to think of this book, then, as my answer to this individual, and, I hope, a repository of knowledge to 
help put to rest many of the myths and legends surrounding C++. 

If the underlying mechanisms supporting the C++ Object Model vary both across implementations and over 
time, how can I possibly provide a general discussion of interest to any particular individual? Static 
initialization provides an interesting case in point. 

Given a class X with a constructor, such as the following: 
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class X  
{  
   friend istream&  
      operator>>( istream&, X& );  
public:  
   X( int sz = 1024 ) { ptr = new char[ sz ]; }  
   ...  
private:  
   char *ptr;  
};  

and the declaration of a global object of class X, such as the following: 

X buf;  
 
main()  
{  
   // buf must be constructed at this point  
   cin >> setw( 1024 ) >> buf;  
   ...  
}  

the C++ Object Model guarantees that the X constructor is applied to buf prior to the first user statement of 
main(). It does not, however, prescribe how that is to get done. The solution is called static initialization; 
the actual implementation depends on the degree of support provided by the environment. 

The original cfront implementation not only presumed no environment support. It also presumed no explicit 
platform target. The only presumption was that of being under some variant of UNIX. Our solution, therefore, 
was specific only to UNIX: the presence of the nm command. The CC command (a UNIX shell script for 
portability) generated an executable, ran the nm command on the executable—thereby generating a new .c 
file—compiled the .c file, and then relinked the executable. (This was called the munch solution.) This did the 
job by trading compile-time efficiency for portability. Eventually, however, users chaffed under the compile-
time overhead. 

The next step was to provide a platform-specific solution: a COFF-based program (referred to as the patch 
solution) that directly examined and threaded the program executable, thus doing away with the need to run 
nm, compile, and relink. (COFF was the Common Object File Format for System V pre-Release 4 UNIX 
systems.) Both of these solutions are program-based, that is, within each .c file requiring static initialization 
cfront generated an sti function to perform the required initializations. Both munch and patch solutions 
searched for functions bearing an sti prefix and arranged for them to be executed in some undefined order 
by a _main() library function inserted as the first statement of main(). 

In parallel with these releases of cfront, a System V COFF-specific C++ compiler was under development. 
Targeted for a specific platform and operating system, this compiler was able to effect a change in the 
System V link editor: a new initialize section that provided for the collection of objects needing static 
initialization. This extension of the link editor provides what I call an environment-based solution that is 
certainly superior to a program-based solution. 

So any generalization based on the cfront program-based solution would be misleading. Why? Because as 
C++ has become a mainstream language, it has received more and more support for environment-based 
solutions. How is this book to maintain a balance, then? The book's strategy is as follows: If significantly 
different implementation models exist across C++ compilers, I present a discussion of at least two models. If 
subsequent implementation models evolved as an attempt to solve perceived problems with the original 
cfront model, as, for example, with support for virtual inheritance, I present a discussion of the historical 
evolution. Whenever I speak of the traditional implementation model, I mean, of course, Stroustrup's original 
design as reflected in cfront and which has provided a pattern of implementation that can still be seen today 
in all commercial implementations, even if only as a "reaction against." 
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Organization of This Book 

Chapter 1, Object Lessons, provides background on the object-based and object-oriented programming 
paradigms supported by C++. It includes a brief tour of the Object Model, illustrating the current prevailing 
industry implementation without looking too closely at multiple or virtual inheritance. (This is fleshed out in 
Chapters 3 and 4.) 

Chapter 2, The Semantics of Constructors, discusses in detail how constructors work. It discusses when 
constructors are synthesized by the compiler and what that means in practical terms for your program's 
performance. 

Chapters 3 through 5 contain the primary material of the book. There, the details of the C++ Object Model 
are discussed. Chapter 3, The Semantics of Data, looks at the handling of data members. Chapter 4, The 
Semantics of Function, focuses on the varieties of member functions, with a detailed look at virtual function 
support. Chapter 5, Semantics of Construction, Destruction, and Copy, deals with support of the class model 
and object lifetime. Program test data is discussed within each of these chapters, where our performance 
expectations are compared against actual performance as the representations move from an object-based to 
object-oriented solution. 

Chapter 6, Runtime Semantics, looks at some of the Object Model behavior at runtime, including the life and 
death of temporary objects and the support of operators new and delete. 

Chapter 7, On the Cusp of the Object Model, focuses on exception handling, template support, and runtime 
type identification. 
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The Intended Audience 

This book is primarily a tutorial, although it is aimed at the intermediate C++ programmer rather than the 
novice. I have attempted to provide sufficient context to make it understandable to anyone who has had 
some prior exposure to C++—for example, someone who has read my C++ Primer—and some experience in 
C++ programming. The ideal reader, however, has been programming in C++ for a few years and wants to 
better understand what is actually going on "under the hood." Portions of the material should be of interest 
even to the advanced C++ programmer, such as the generation of temporaries and the details of the named 
return value optimization. At least, this has proved to be so in the various public presentations of this 
material I have given as it has evolved. 
Ru-Brd  
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A Note on Program Examples and Program Execution 

The use of program code in this text serves two primary purposes: 

1. To provide concrete illustrations of the various aspects of the C++ Object Model under discussion 

2. To provide test cases by which to measure the relative cost of various language features 

In neither case is the code intended to represent models of production-quality programming. I am not, for 
example, suggesting that a real 3D graphics library represents a 3D point using a virtual inheritance 
hierarchy (although one can be found in [POKOR94]). 

All the test programs in the text were compiled and executed on an SGI Indigo2xL running version 5.2 of 
SGI's UNIX operating system under both its CC and NCC compilers. CC is cfront Release 3.0.1 (it generates C 
code, which a C compiler then recompiles into an executable). NCC is version 2.19 of the Edison Design 
Group's C++ front-end with a code generator supplied by SGI. The times were measured as the average user 
time reported by the UNIX timex command and represent 10 million iterations of the test function or 
statement block. 
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While the use of these two compilers on the xL hardware might strike the reader as somewhat esoteric, I feel 
doing so serves the book's purposes quite well. Both cfront and now the Edison Design Group's front-end 
(reportedly characterized by Bjarne as the son of cfront) are not platform specific. Rather, they are generic 
implementations licensed to over 34 computer manufacturers (including Cray, SGI, and Intel) and producers 
of software environments (including Centerline and Novell, which is the former UNIX Software Laboratories). 
Performance measurements are intended not to provide a benchmark of current compilation systems but to 
provide a measure of the relative costs of the various features of the C++ Object Model. Benchmark 
performance numbers can be found in nearly any "compiler shoot-out" product review in the trade press. 
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Chapter 1. Object Lessons 

In C, a data abstraction and the operations that perform on it are declared separately—that is, there is no 
language-supported relationship between data and functions. We speak of this method of programming as 
procedural, driven by a set of algorithms divided into task-oriented functions operating on shared, external 
data. For example, if we declare a struct Point3d, such as the following: 

typedef struct point3d  
{  
   float x;  
   float y;  
   float z;  
} Point3d;  

the operation to print a particular Point3d might be defined either as a function 

void  
Point3d_print( const Point3d *pd )  
{  
   printf("( %g, %g, %g )", pd->x, pd->y, pd->z );  
}  

or, for efficiency, as a preprocessor macro: 

#define Point3d_print( pd )  \  
   printf("( %g, %g, %g )", pd->x, pd->y, pd->z );  

Or it may be directly implemented within individual code segments: 

void  
my_foo()  
{  
   Point3d *pd = get_a_point();  
   ...  
   /* print the point directly ... */  
   printf("( %g, %g, %g )", pd->x, pd->y, pd->z );  
}  

Similarly, a particular coordinate member of a point is accessed either directly: 

Point3d pt;  
pt.x = 0.0;  

or through a preprocessor macro: 

#define X( p, xval ) (p.x) = (xval);  
...  
X( pt, 0.0 );  
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In C++, Point3d is likely to be implemented either as an independent abstract data type (ADT): 

class Point3d  
{  
public:  
   Point3d( float x = 0.0,  
            float y = 0.0, float z = 0.0 )  
      : _x( x ), _y( y ), _z( z ) {}  
 
   float x() { return _x; }  
   float y() { return _y; }  
   float z() { return _z; }  
 
   void x( float xval ) { _x = xval; }  
 
   // ... etc ...  
private:  
   float _x;  
   float _y;  
   float _z;  
};  
inline ostream&  
operator<<( ostream &os, const Point3d &pt )  
{  
   os << "( " << pt.x() << ", "  
      << pt.y() << ", " << pt.z() << " )";  
};  

or as a two- or three-level class hierarchy: 

class Point {  
public:  
   Point( float x = 0.0 ) : _x( x ) {}  
 
   float x() { return _x; }  
   void x( float xval ) { _x = xval; }  
   // ...  
protected:  
   float _x;  
};  
 
class Point2d : public Point {  
public:  
   Point2d( float x = 0.0, float y = 0.0 )  
      : Point( x ), _y( y ) {}  
 
   float y() { return _y; }  
   void y( float yval ) { _y = yval; }  
 
   // ...  
protected:  
   float _y;  
};  
 
class Point3d : public Point2d {  
public:  
   Point3d( float x = 0.0, float y = 0.0, float z = 0.0 )  
      : Point2d( x, y ), _z( z ) {}  
 
   float z() { return _z; }  
   void z( float zval ) { _z = zval; }  
 
   // ...  
protected:  
   float _z;  
};  
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Moreover, either of these implementations may be parameterized, either by the type of the coordinate: 

template < class type >  
class Point3d  
{  
public:  
   Point3d( type x = 0.0,  
            type y = 0.0, type z = 0.0 )  
      : _x( x ), _y( y ), _z( z ) {}  
 
   type x() { return _x; }  
   void x( type xval ) { _x = xval; }  
 
   // ... etc ...  
private:  
   type _x;  
   type _y;  
   type _z;  
};  

or by both the type and number of coordinates: 

template < class type, int dim >  
class Point  
{  
public:  
   Point();  
   Point( type coords[ dim ] ) {  
      for ( int index = 0; index < dim; index++ )  
         _coords[ index ] = coords[ index ];  
   }  
 
   type& operator[]( int index ) {  
      assert( index < dim && index >= 0 );  
      return _coords[ index ]; }  
 
   type  operator[]( int index ) const  
      { /* same as non-const instance */ }  
 
   // ... etc ...  
private:  
   type _coords[ dim ];  
};  
inline  
template < class type, int dim >  
ostream&  
operator<<( ostream &os, const Point< type, dim > &pt )  
{  
   os << "( ";  
   for ( int ix = 0; ix < dim-1; ix++ )  
      os << pt[ ix ] << ", "  
   os << pt[ dim–1];  
   os << " )";  
}  

These are obviously not only very different styles of programming, but also very different ways of thinking 
about our programs. There are many more or less convincing arguments for why the data encapsulation of an
ADT or class hierarchy is better (in the software engineering sense) than the procedural use of global data 
such as that in C programs. Those arguments, however, are often lost on programmers who are charged with 
getting an application up and running quickly and efficiently. The appeal of C is both its leanness and its 
relative simplicity. 

The C++ implementations of a 3D point are more complicated than their C counterpart, particularly the 
template instances. This doesn't mean they are not also considerably more powerful or, again in a software 
engineering sense, better. But being more powerful or better is not necessarily a convincing argument for 
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their use. 

Ru-Brd  

Ru-Brd  

Layout Costs for Adding Encapsulation 

An obvious first question a programmer might ask while looking at the transformed Point3d implementations 
under C++ concerns the layout costs for adding encapsulation. The answer is that there are no additional 
layout costs for supporting the class Point3d. The three coordinate data members are directly contained 
within each class object, as they are in the C struct. The member functions, although included in the class 
declaration, are not reflected in the object layout; one copy only of each non-inline member function is 
generated. Each inline function has either zero or one definition of itself generated within each module in 
which it is used. The Point3d class has no space or runtime penalty in supporting encapsulation. As you will 
see, the primary layout and access-time overheads within C++ are associated with the virtuals, that is, 

the virtual function mechanism in its support of an efficient run-time binding, and 

a virtual base class in its support of a single, shared instance of a base class occurring multiple times 
within an inheritance hierarchy. 

There is also additional overhead under multiple inheritance in the conversion between a derived class and its 
second or subsequent base class. In general, however, there is no inherent reason a program in C++ need be
any larger or slower than its equivalent C program. 

 
Ru-Brd  

Ru-Brd  

1.1 The C++ Object Model 

In C++, there are two flavors of class data members—static and nonstatic—and three flavors of class 
member functions—static, nonstatic, and virtual. Given the following declaration of a class Point: 

class Point  
{  
public:  
   Point( float xval );  
   virtual ~Point();  
 
   float x() const;  
   static int PointCount();  
 
protected:  
   virtual ostream&  
      print( ostream &os ) const;  
 
   float _x;  
   static int _point_count;  
};  

how is the class Point to be represented within the machine? That is, how do we model the various flavors of 
data and function members? 

A Simple Object Model 

Our first object model is admittedly very simple. It might be used for a C++ implementation designed to 
minimize the complexity of the compiler at the expense of space and runtime efficiency. In this simple model, 
an object is a sequence of slots, where each slot points to a member. The members are assigned a slot in the 
order of their declarations. There is a slot for each data or function member. This is illustrated in Figure 1.1. 
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Figure 1.1. Simple Object Model 

 

In this simple model, the members themselves are not placed within the object. Only pointers addressing the 
members are placed within the object. Doing this avoids problems from members' being quite different types 
and requiring different amounts (and sometimes different types of) storage. Members within an object are 
addressed by their slot's index. For example, _x's index is 6 and _point_count's index is 7. The general 
size of a class object is the size of a pointer multiplied by the number of members declared by the class. 

Although this model is not used in practice, this simple concept of an index or slot number is the one that has 
been developed into the C++ pointer-to-member concept (see [LIPP88]). 

A Table-driven Object Model 

For an implementation to maintain a uniform representation for the objects of all classes, an alternative 
object model might factor out all member specific information, placing it in a data member and member 
function pair of tables. The class object contains the pointers to the two member tables. The member function
table is a sequence of slots, with each slot addressing a member. The data member table directly holds the 
data. This is shown in Figure 1.2 (on page 8). 

Figure 1.2. Member Table Object Model 

 

Although this model is not used in practice within C++, the concept of a member function table has been the 
traditional implementation supporting efficient runtime resolution of virtual functions. [1] 
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[1] At least one implementation of the CORBA ORB has used a form of this two table model. The SOM object model 
also relies on this two table model [HAM95]. 

The C++ Object Model 

Stroustrup's original (and still prevailing) C++ Object Model is derived from the simple object model by 
optimizing for space and access time. Nonstatic data members are allocated directly within each class object. 
Static data members are stored outside the individual class object. Static and nonstatic function members are 
also hoisted outside the class object. Virtual functions are supported in two steps: 

1. A table of pointers to virtual functions is generated for each class (this is called the virtual table). 

2. A single pointer to the associated virtual table is inserted within each class object (traditionally, this 
has been called the vptr). The setting, resetting, and not setting of the vptr is handled automatically 
through code generated within each class constructor, destructor, and copy assignment operator (this 
is discussed in Chapter 5). The type_info object associated with each class in support of runtime 
type identification (RTTI) is also addressed within the virtual table, usually within the table's first slot. 

Figure 1.3 illustrates the general C++ Object Model for our Point class. The primary strength of the C++ 
Object Model is its space and runtime efficiency. Its primary drawback is the need to recompile unmodified 
code that makes use of an object of a class for which there has been an addition, removal, or modification of 
the nonstatic class data members. (The two table model, for example, offers more flexibility by providing an 
additional level of indirection. But it does this at the cost of space and runtime efficiency.) 

Figure 1.3. C++ Object Model 

 

Adding Inheritance 

C++ supports both single inheritance: 

class Library_materials { ... };  
class Book : public Library_materials { ... };  
class Rental_book : public Book { ... };  

and multiple inheritance: 

// original pre-Standard iostream implementation  
class iostream:  
   public istream,  
   public ostream { ... };  

Moreover, the inheritance may be specified as virtual (that is, shared): 
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class istream : virtual public ios { ... };  
class ostream : virtual public ios { ... };  

In the case of virtual inheritance, only a single occurrence of the base class is maintained (called a subobject) 
regardless of how many times the class is derived from within the inheritance chain. iostream, for example, 
contains only a single instance of the virtual ios base class. 

How might a derived class internally model its base class instance? In a simple base class object model, each 
base class might be assigned a slot within the derived class object. Each slot holds the address of the base 
class subobject. The primary drawback to this scheme is the space and access-time overhead of the 
indirection. A benefit is that the size of the class object is unaffected by changes in the size of its associated 
base classes. 

Alternatively, one can imagine a base table model. Here, a base class table is generated for which each slot 
contains the address of an associated base class, much as the virtual table holds the address of each virtual 
function. Each class object contains a bptr initialized to address its base class table. The primary drawback to 
this strategy, of course, is both the space and access-time overhead of the indirection. One benefit is a 
uniform representation of inheritance within each class object. Each class object would contain a base table 
pointer at some fixed location regardless of the size or number of its base classes. A second benefit would be 
the ability to grow, shrink, or otherwise modify the base class table without changing the size of the class 
objects themselves. 

In both schemes, the degree of indirection increases with the depth of the inheritance chain; for example, a 
Rental_book requires two indirections to access an inherited member of its Library_materials class, whereas 
Book requires only one. A uniform access time could be gained by duplicating within the derived class a 
pointer to each base class within the inheritance chain. The tradeoff is in the additional space required to 
maintain the additional pointers. 

The original inheritance model supported by C++ forgoes all indirection; the data members of the base class 
subobject are directly stored within the derived class object. This offers the most compact and most efficient 
access of the base class members. The drawback, of course, is that any change to the base class members, 
such as adding, removing, or changing a member's type, requires that all code using objects of the base class
or any class derived from it be recompiled. 

The introduction of virtual base classes into the language at the time of Release 2.0 required some form of 
indirect base class representation. The original model of virtual base class support added a pointer into the 
class object for each associated virtual base class. Alternative models have evolved that either introduce a 
virtual base class table or augment the existing virtual table to maintain the location of each virtual base 
class (see Section 3.4 for a discussion). 

How the Object Model Effects Programs 

In practice, what does this mean for the programmer? Support for the object model results in both 
modifications of the existing program code and the insertion of additional code. For example, given the 
following function, where class X defines a copy constructor, virtual destructor, and virtual function foo(): 

X foobar()  
{  
   X xx;  
   X *px = new X;  
 
   // foo() is virtual function  
   xx.foo();  
   px->foo();  
 
   delete px;  
   return xx;  
};  

the likely internal transformation of the function looks as follows: 

// Probable internal transformation  
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// Pseudo C++ code  
void foobar( X &_result )  
{  
   // construct _result  
   // _result replaces local xx ...  
   _result.X::X();  
 
   // expand X *px = new X;  
   px = _new( sizeof( X ));  
   if ( px != 0 )  
        px->X::X();  
 
   // expand xx.foo(): suppress virtual mechanism  
   // replace xx with _result  
   foo( &_result );  
 
   // expand px->foo() using virtual mechanism  
   ( *px->_vtbl[ 2 ] )( px )  
   // expand delete px;  
   if ( px != 0 ) {  
      ( *px->_vtbl[ 1 ] )( px ); // destructor  
       _delete( px );  
   }  
 
   // replace named return statement  
   // no need to destroy local object xx  
   return;  
};  

Wow, that really is different, isn't it? Of course, you're not supposed to understand all these transformations 
at this point in the book. In the subsequent chapters, I look at the what and why of each of these, plus many 
more. Ideally, you'll look back, snap your fingers, and say, "Oh, yeah, sure," wondering why you were ever 
puzzled. 
Ru-Brd  

Ru-Brd  

1.2 A Keyword Distinction 

Because C++ strives to maintain (as close as possible) language compatibility with C, C++ is considerably 
more complicated than it would otherwise be. For example, overloaded function resolution would be a lot 
simpler if there were not eight flavors of integer to support. Similarly, if C++ were to throw off the C 
declaration syntax, lookahead would not be required to determine that the following is an invocation of pf 
rather than its definition: 

// don't know if declaration or invocation  
// until see the integer constant 1024  
int ( *pf )( 1024 );  

On the following declaration, lookahead does not even work: 

// meta-language rule:  
// declaration of pq, not invocation  
int ( *pq )( );  

A meta-language rule is required, dictating that when the language cannot distinguish between a declaration 
and an expression, it is to be interpreted as a declaration. 

Similarly, the concept of a class could be supported by a single class keyword, if C++ were not required to 
support existing C code and, with that, the keyword struct. Surprisingly, one of the most-asked questions of 
C programmers moving to C++ (once the questions about performance have been put aside) is when, if ever,
should one use a struct declaration rather than a class declaration when writing a program using C++? 

In 1986, my answer to this question was an unequivocal "never." In both the first and second editions of my 
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C++ Primer, the keyword struct does not appear in the text, except in Appendix C, which, logically enough, 
discusses the C language. At that time, this was one of those small philosophical points that one necessarily 
does not point out. However, it is one from which one gains some small (admittedly quite small) satisfaction 
when, well, when it is pointed out, usually as a question: "Hey, did you know? Struct. The keyword. It's not 
used anywhere.…" But as a colleague of mine at Bell Laboratories indirectly pointed out to me, even the 
smallest philosophical point can have a human cost. For example, a C programmer in his group, anxious to 
learn C++, was quite distressed to find struct absent from my book. Apparently its inclusion would have 
provided a transitional lifeline to make the programmer's rocky ascent less bruising. So much, then, for 
philosophy. 

Keywords, Schmeewords 

One answer to the question of when, if ever, you should use a struct declaration rather than a class 
declaration then, is whenever it makes one feel better. 

Although this answer does not achieve a high technical level, it does point out an important distinction that it 
is important not to make: the keyword struct by itself does not necessarily signify anything about the 
declaration to follow. We can use struct in place of class, but still declare public, protected, and private 
sections and a full public interface, as well as specify virtual functions and the full range of single, multiple, 
and virtual inheritance. Back in the "early days," it seemed everyone would spend a full 10 minutes of a one-
hour introductory talk on C++ distinguishing the nondistinction between 

class cplus_plus_keyword {  
public:  
   // mumble ...  
};  

and its C equivalent 

struct c_keyword {  
   // the same mumble  
};  

When people and textbooks speak of a struct, they mean a data aggregate without private data or a set of 
operations associated with it, that is, its C usage. This usage should be distinguished from its more 
pedestrian use simply as a keyword introducing a user-defined type within C++. In the sense of its C usage, 
valid design reasons exist for its use. In the C++ sense, however, the reason for choosing between struct 
and class as a keyword with which to introduce an ADT is only so much sound and fury. This is much in the 
spirit of a discussion on the placement of braces within a function or whether to use an underscore within 
variable and type names (the infamous isRight versus is_right debate). 

There is a significant conceptual distinction between a struct, as supported in C, and a class, as supported in 
C++. My point is simply that the keyword itself does not provide that distinction. That is, if one is provided 
with the following body of a user-defined type within C++, one simply says, "Oh, that's a class:" 

// tag name is for the moment missing  
{  
public:  
   operator int();  
   virtual void foo();  
   // ...  
protected:  
   static int object_count;  
   // mumble;  
};  

regardless of the keyword used to introduce it. The use of the keywords struct and class are 
interchangeable in providing a tag name. The conceptual meaning of the two declarations is determined by 
an examination only of the body of the declaration. 

In cfront, for example, the two keywords are replaced by the shared token AGGR in the parser. In the 
Foundation project, Rob Murray's ALF hierarchy did retain knowledge of the actual keyword used by the 
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programmer. This information, however, was not used by the internal compiler. Rather it was used by the 
"unparser" when a user requested an ASCII representation of a program. Users became upset when the exact
keyword they specified was not present in the "unparsed" instance, even when the program was otherwise 
equivalent. 

I first stumbled across what I call the "passion of the keyword" around 1988 when a new member of our 
internal testing group issued a dead-in-the-water bug report against cfront itself. In cfront's original 
declaration of its internal type hierarchy, the root node and each derived subtype was declared with the 
keyword struct. In a subsequent modification of the header file, a forward declaration of one or another of 
the derived subtypes had used the keyword class: 

// illegal?  no ... simply inconsistent  
class node;  
...  
struct node { ... };  

The tester claimed this was a gross error, one that cfront failed to catch, since, of course, cfront was used to 
compile itself. 

The real issue, however, is not whether all declarations of a user-defined type must use a consistent 
keyword. Rather the issue is whether the use of the class or struct keyword makes any promise as to the 
internal declaration of the type. That is, if use of the struct keyword enforces the C concept of a data 
abstraction, while use of the class keyword enforces the concept of an ADT, then, of course, failure to be 
consistent is an incorrect usage of the language. This would then be as incorrect as is, for example, the 
contrary declaration of an object as static and extern: 

// illegal?  yes  
// declarations make contrary storage claims  
static int foo;  
...  
extern int foo;  

This set of declarations makes contrary storage claims on the object foo. However, as you've seen, use of 
either the struct or class keyword makes no such claims. The actual characteristics of the class are 
determined by the body of the declaration. Enforcing a consistent usage is simply a question of style. 

The second time I stubbed my implementation toe on this issue was during Release 3.0 with regard to the 
parameter lists of templates. Steve Buroff, another Bell Laboratories colleague back then, walked into my 
office one day pointing out that the following code: 

// originally flagged as illegal  
template < struct Type >  
struct mumble { ... };  

was flagged by the parser as illegal, while the following otherwise equivalent code was not: 

// ok: explicit use of class keyword  
template < class Type >  
struct mumble { ... };  

"Why?" he asked. 

"Why not?" I cleverly countered, recounting the fact that templates did not present a backward C 
compatibility issue. Let's strike aside struct, I said, and be done with it. (I may even have then leaped atop 
my Sun 3/60 and brandished its mouse in my best Erroll Flynn manner. Honestly, I don't recall. However, I 
do recall changing the parser to accept both keywords. Changing it, in fact, without either first passing it by 
Bjarne or the fledgling ANSI C++ committee. Thus are language dialects born!) 

One might argue, then, that a great deal of confusion could be removed if the language chose to support only 
one of the two keywords. It is impossible not to support struct if one wishes to support existing C code. And 
the language simply had to do that. Okay. Well, then was it necessary to introduce the additional keyword 
class? Really necessary? No, but it is certainly desirable, since the language introduces not only the keyword 
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but the philosophy of encapsulation and inheritance that it supports. Imagine, for example, speaking of an 
abstract base struct or of the Zoo Animal struct hierarchy containing one or more virtual base structs. 

In the preceding discussion, I distinguished between use of the keyword struct and the philosophical concept 
of a struct declaration. One might claim that use of the keyword accompanied by the declaration of a public 
interface (the philosophical underpinning of a class) is like the use of slang or diminutives in public discourse. 
One might even further claim that this use is simply the self-assertion of the C immigrant to the C++ 
community. 

The Politically Correct Struct 

A C program's trick is sometimes a C++ program's trap. One example of this is the use of a one-element 
array at the end of a struct to allow individual struct objects to address variable-sized arrays: 

struct mumble {  
   /* stuff */  
   char pc[ 1 ];  
};  
 
// grab a string from file or standard input  
// allocate memory both for struct & string  
 
struct mumble *pmumb1 = ( struct mumble* )  
   malloc(sizeof(struct mumble)+strlen(string)+1);  
 
strcpy( &mumble.pc, string );  

This may or may not translate well when placed within a class declaration that 

specifies multiple access sections containing data, 

derives from another class or is itself the object of derivation, or 

defines one or more virtual functions. 

The data members within a single access section are guaranteed within C++ to be laid out in the order of 
their declaration. The layout of data contained in multiple access sections, however, is left undefined. In the 
following declaration, for example, the C trick may or may not work, depending on whether the protected 
data members are placed before or after those declared private: 

class stumble {  
public:  
   // operations ...  
protected:  
   // protected stuff  
private:  
   /* private stuff */  
   char pc[ 1 ];  
};  

Similarly, the layout of data members of the base and derived classes is left undefined, thereby also negating 
any guarantee that the trick might work. The presence of a virtual function also places the trick's viability in 
question. The best advice is not to do it. (Chapter 3 discusses these layout issues in greater detail.) 

If a programmer absolutely needs a data portion of an arbitrarily complex C++ class to have the look and 
feel of an equivalent C declaration, that portion is best factored out into an independent struct declaration. 
The original idiom for combining this C portion with its C++ part (see [KOENIG93]) was to derive the C++ 
part from the C struct: 

struct C_point { ... };  
class Point : public C_point { ... };  
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thus supporting both the C and C++ usage: 

extern void draw_line( Point, Point );  
extern "C" void draw_rect ( C_point, C_Point );  
 
draw_line( Point( 0, 0 ), Point( 100, 100 ));  
draw_rect( Point( 0, 0 ), Point( 100, 100 ));  

This idiom is no longer recommended, however, because of changes to the class inheritance layout in some 
compilers (for example, the Microsoft C++ compiler) in support of the virtual function mechanism (see 
Section 3.4 for a discussion). Composition, rather than inheritance, is the only portable method of combining 
C and C++ portions of a class (the conversion operator provides a handy extraction method): 

struct C_point { ... };  
 
class Point {  
public:  
   operator C_point() { return _c_point; }  
   // ...  
private:  
   C_point _c_point;  
   // ...  
};  

One reasonable use of the C struct in C++, then, is when you want to pass all or part of a complex class 
object to a C function. This struct declaration serves to encapsulate that data and guarantees a compatible C 
storage layout. This guarantee, however, is maintained only under composition. Under inheritance, the 
compiler decides whether additional data members are inserted within the base struct subobject (again, see 
Section 3.4 for a discussion, as well as Figures 3.2(a) and 3.2(b)). 

 
Ru-Brd  

Ru-Brd  

1.3 An Object Distinction 

The C++ programming model directly supports three programming paradigms: 

1. The procedural model as programmed in C, and, of course, supported within C++. An example of this 
is string manipulation using character arrays and the family of str* functions defined in the Standard 
C library:  

char boy[] = "Danny";  
char *p_son;  
 
...  
 
p_son = new char[ strlen( boy ) + 1 ];  
strcpy( p_son, boy );  
 
...  
 
if ( !strcmp( p_son, boy ))  
   take_to_disneyland( boy );  

2. The abstract data type (ADT) model in which users of the abstraction are provided with a set of 
operations (the public interface), while the implementation remains hidden. An example of this is a 
String class:  

String girl = "Anna";  
String daughter;  
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...  
 
// String::operator=();  
daughter = girl;  
 
...  
 
// String::operator==();  
if ( girl == daughter )  
   take_to_disneyland( girl );  

3. The object-oriented (OO) model in which a collection of related types are encapsulated through an 
abstract base class providing a common interface. An example of this is a Library_materials class from 
which actual subtypes such as Book, Video, Compact_Disc, Puppet, and Laptop are derived:  

void  
check_in( Library_materials *pmat )  
{  
   if ( pmat->late() )  
        pmat->fine();  
   pmat->check_in();  
   if ( Lender *plend = pmat->reserved() )  
        pmat->notify( plend );  
}  

Programs written purely in the idiom of any one of these paradigms tend to be well behaved. Mixed paradigm 
programs, however, hold a greater potential for surprise, particularly when the mixing is inadvertent. The 
most common inadvertent mixing of idioms occurs when a concrete instance of a base class, such as 

Library_materials thing1;  

is used to program some aspect of polymorphism: 

// class Book : public Library_materials { ...};  
Book book;  
 
// Oops: thing1 is not a Book!  
// Rather, book is ``sliced'' —  
// thing1 remains a Library_materials  
thing1 = book;  
 
// Oops: invokes  
// Library_materials::check_in()  
thing1.check_in();  

rather than a pointer or reference of the base class: 

// OK: thing2 now references book  
Library_materials &thing2 = book;  
 
// OK: invokes Book::check_in()  
thing2.check_in();  

Although you can manipulate a base class object of an inheritance hierarchy either directly or indirectly, only 
the indirect manipulation of the object through a pointer or reference supports the polymorphism necessary 
for OO programming. The definition and use of thing2 in the previous example is a well-behaved instance of 
the OO paradigm. The definition and use of thing1 falls outside the OO idiom; it reflects a well-behaved 
instance of the ADT paradigm. Whether the behavior of thing1 is good or bad depends on what the 
programmer intended. In this example, its behavior is very likely a surprise. 

In the OO paradigm, the programmer manipulates an unknown instance of a bounded but infinite set of 
types. (The set of types is bounded by its inheritance hierarchy; in theory, however, there is no limit to the 
depth and breadth of that hierarchy.) The actual type of the object addressed is not resolved in principle until 
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runtime at each particular point of execution. In C++, this is achieved only through the manipulation of 
objects through pointers and references. In contrast, in the ADT paradigm the programmer manipulates an 
instance of a fixed, singular type that is completely defined at the point of compilation. For example, given 
the following set of declarations: 

// represent objects: uncertain type  
Library_materials *px = retrieve_some_material();  
Library_materials &rx = *px;  
 
// represents datum: no surprise  
Library_materials dx = *px;  

it can never be said with certainty what the actual type of the object is that px or rx addresses. It can only 
be said that it is either a Library_materials object or a subtype rooted by Library_materials class. dx, 
however, is and can only be an object of the Library_materials class. Later in this section, I discuss why this 
behavior, although perhaps unexpected, is well behaved. 

Although the polymorphic manipulation of an object requires that the object be accessed either through a 
pointer or a reference, the manipulation of a pointer or reference in C++ does not in itself necessarily result 
in polymorphism! For example, consider 

// no polymorphism  
int *pi;  
 
// no language supported polymorphism  
void *pvi;  
 
// ok: class x serves as a base class  
x *px;  

In C++, polymorphism exists only within individual public class hierarchies. px, for example, may address 
either an object of its own type or a type publicly derived from it (not considering ill-behaved casts). 
Nonpublic derivation and pointers of type void* can be spoken of as polymorphic, but they are without 
explicit language support; that is, they must be managed by the programmer through explicit casts. (One 
might say that they are not first-class polymorphic objects.) 

The C++ language supports polymorphism in the following ways: 

1. Through a set of implicit conversions, such as the conversion of a derived class pointer to a pointer of 
its public base type:  

shape *ps = new circle();  

2. Through the virtual function mechanism:  

ps->rotate();  

3. Through the dynamic_cast and typeid operators:  

if ( circle *pc =  
   dynamic_cast< circle* >( ps )) ...  

The primary use of polymorphism is to effect type encapsulation through a shared interface usually defined 
within an abstract base class from which specific subtypes are derived. The Library_materials class, for 
example, defines an interface for a Book, Video, and Puppet subtype. This shared interface is invoked through
the virtual function mechanism that resolves which instance of a function to invoke based on the actual type 
of the object at each point during execution. By our writing code such as 

library_material->check_out();  

user code is shielded from the variety and volatility of lending materials supported by a particular library. This
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not only allows for the addition, revision, or removal of types without requiring changes to user programs. It 
also frees the provider of a new Library_materials subtype from having to recode behavior or actions common
to all types in the hierarchy itself. 

Consider the following code fragment: 

void rotate(  
   X datum,  
   const X *pointer,  
   const X &reference )  
{  
   // cannot determine until run-time  
   // actual instance of rotate() invoked  
   (*pointer).rotate();  
   reference.rotate();  
   // always invokes X::rotate()  
   datum.rotate();  
}  
 
main() {  
   Z z; // a subtype of X  
 
   rotate( z, &z, z );  
   return 0;  
}  

The two invocations through pointer and reference are resolved dynamically. In this example, they both 
invoke Z::rotate(). The invocation through datum may or may not be invoked through the virtual 
mechanism; however, it will always invoke X::rotate(). (This is what is called a "quality of compilation" 
issue: whether the invocation of a virtual function through datum circumvents or employs the virtual 
mechanism. Semantically, the results are equivalent. This is looked at in more detail in Section 4.2.) 

The memory requirements to represent a class object in general are the following: 

The accumulated size of its nonstatic data members 

Plus any padding (between members or on the aggregate boundary itself) due to alignment constraints
(or simple efficiency) 

Plus any internally generated overhead to support the virtuals 

The memory requirement to represent a pointer, [2] however, is a fixed size regardless of the type it 
addresses. For example, given the following declaration of a ZooAnimal class: 

[2] Or to represent a reference; internally, a reference is generally implemented as a pointer and the object syntax 
transformed into the indirection required of a pointer. 

class ZooAnimal {  
public:  
   ZooAnimal();  
   virtual ~ZooAnimal();  
 
   // ...  
 
   virtual void rotate();  
protected:  
   int loc;  
   String name;  
};  
 
ZooAnimal za( "Zoey" );  
ZooAnimal *pza = &za;  
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a likely layout of the class object za and the pointer pza is pictured in Figure 1.4. (I return to the layout of 
data members in Chapter 3.) 

Figure 1.4. Layout of Object and Pointer of Independent Class 

 

The Type of a Pointer 

But how, then, does a pointer to a ZooAnimal differ from, say, a pointer to an integer or a pointer to a 
template Array instantiated with a String? 

ZooAnimal *px;  
int *pi  
Array< String > *pta;  

In terms of memory requirements, there is generally no difference: all three need to be allocated sufficient 
memory to hold a machine address (usually a machine word). So the difference between pointers to different 
types rests neither in the representation of the pointer nor in the values (addresses) the pointers may hold. 
The difference lies in the type of object being addressed. That is, the type of a pointer instructs the compiler 
as to how to interpret the memory found at a particular address and also just how much memory that 
interpretation should span: 

An integer pointer addressing memory location 1000 on a 32-bit machine spans the address space 
1000—1003. 

The ZooAnimal pointer, if we presume a conventional 8-byte String (a 4-byte character pointer and 
an integer to hold the string length), spans the address space 1000—1015. 

Hmm. Just out of curiosity, what address space does a void* pointer that holds memory location 1000 span? 
That's right, we don't know. That's why a pointer of type void* can only hold an address and not actually 
operate on the object it addresses. 

So a cast in general is a kind of compiler directive. In most cases, it does not alter the actual address a 
pointer contains. Rather, it alters only the interpretation of the size and composition of the memory being 
addressed. 

Adding Polymorphism 

Now, let's define a Bear as a kind of ZooAnimal. This is done, of course, through public inheritance: 

class Bear : public ZooAnimal {  
public:  
   Bear();  
   ~Bear();  
   // ...  
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   void rotate();  
   virtual void dance();  
   // ...  
protected:  
   enum Dances { ... };  
 
   Dances dances_known;  
   int cell_block;  
};  
 
Bear b( "Yogi" );  
Bear *pb = &b;  
Bear &rb = *pb;  

What can we say about the memory requirements of b, pb, and rb? Both the pointer and reference require a 
single word of storage (4 bytes on a 32-bit processor). The Bear object itself, however, requires 24 bytes 
(the size of a ZooAnimal [16 bytes] plus the 8 bytes Bear introduces). A likely memory layout is pictured in 
Figure 1.5. 

Figure 1.5. Layout of Object and Pointer of Derived Class 

 

Okay, given that our Bear object is situated at memory location 1000, what are the real differences between 
a Bear and ZooAnimal pointer? 

Bear b;  
ZooAnimal *pz = &b;  
Bear *pb = &b;  

Each addresses the same first byte of the Bear object. The difference is that the address span of pb 
encompasses the entire Bear object, while the span of pz encompasses only the ZooAnimal subobject of 
Bear. 

pz cannot directly access any members other than those present within the ZooAnimal subobject, except 
through the virtual mechanism: 

// illegal: cell_block not a member  
// of ZooAnimal, although we ``know''  
// pz currently addresses a Bear object  
pz->cell_block;  
// okay: an explicit downcast  
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(( Bear* )pz)->cell_block;  
 
// better: but a run-time operation  
if ( Bear* pb2 = dynamic_cast< Bear* >( pz ))  
   pb2->cell_block;  
 
// ok: cell_block a member of Bear  
pb->cell_block;  

When we write 

pz->rotate();  

the type of pz determines the following at compile time: 

The fixed, available interface (that is, pz may invoke only the ZooAnimal public interface) 

The access level of that interface (for example, rotate() is a public member of ZooAnimal) 

The type of the object that pz addresses at each point of execution determines the instance of rotate() 
invoked. The encapsulation of the type information is maintained not in pz but in the link between the 
object's vptr and the virtual table the vptr addresses (see Section 4.2 for a full discussion of virtual 
functions). 

So, then, why is it that, given 

Bear b;  
ZooAnimal za = b;  
 
// ZooAnimal::rotate() invoked  
za.rotate();  

the instance of rotate() invoked is the ZooAnimal instance and not that of Bear? Moreover, if memberwise 
initialization copies the values of one object to another, why is za's vptr not addressing Bear's virtual table? 

The answer to the second question is that the compiler intercedes in the initialization and assignment of one 
class object with another. The compiler must ensure that if an object contains one or more vptrs, those vptr 
values are not initialized or changed by the source object . 

The answer to the first question is that za is not (and can never be) a Bear; it is (and can never be anything 
but) a ZooAnimal. Polymorphism, the potential to be of more than one type, is not physically possible in 
directly accessed objects. Paradoxically, direct object manipulation is not supported under OO programming. 
For example, given the following set of definitions: 

{  
   ZooAnimal za;  
   ZooAnimal *pza;  
 
   Bear b;  
   Panda *pp = new Panda;  
 
   pza = &b;  
}  

one possible memory layout is pictured in Figure 1.6. 

Figure 1.6. Memory Layout of Sequence of Definitions 
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Assigning pz the address of either za, b, or that contained by pp is obviously not a problem. A pointer and a 
reference support polymorphism because they do not involve any type-dependent commitment of resources. 
Rather, all that is altered is the interpretation of the size and composition of the memory they address. 

Any attempt to alter the actual size of the object za, however, violates the contracted resource requirements 
of its definition. Assign the entire Bear object to za and the object overflows its allocated memory. As a 
result, the executable is, literally, corrupted, although the corruption may not manifest itself as a core dump. 

When a base class object is directly initialized or assigned with a derived class object, the derived object is 
sliced to fit into the available memory resources of the base type. There is nothing of the derived type 
remaining. Polymorphism is not present, and an observant compiler can resolve an invocation of a virtual 
function through the object at compile time, thus by-passing the virtual mechanism. This can be a significant 
performance win if the virtual function is defined as inline. 

To summarize, polymorphism is a powerful design mechanism that allows for the encapsulation of related 
types behind an abstract public interface, such as our Library_materials hierarchy. The cost is an additional 
level of indirection, both in terms of memory acquisition and type resolution. C++ supports polymorphism 
through class pointers and references. This style of programming is called object-oriented. 

C++ also supports a concrete ADT style of programming now called object-based (OB)—nonpolymorphic data 
types, such as a String class. A String class exhibits a nonpolymorphic form of encapsulation; it provides a 
public interface and private implementation (both of state and algorithm) but does not support type 
extension. An OB design can be faster and more compact than an equivalent OO design. Faster because all 
function invocations are resolved at compile time and object construction need not set up the virtual 
mechanism, and more compact because each class object need not carry the additional overhead traditionally 
associated with the support of the virtual mechanism. However, an OB design also is less flexible. 

Both OO and OB design strategies have their proponents and critics. An interesting point/counterpoint 
discussion of these two strategies can be found in [BOOCH93], [CARROLL93], and [LEA93]. These articles 
discuss, in turn, the design decisions of the C++ Booch Components library, the Bell Laboratories' Standard 
C++ Components library, and the GNU g++ library. The trade-off usually boils down to one of flexibility (OO) 
versus efficiency (OB). Before one can effectively choose between the two, however, one needs to clearly 
understand the behavior of each and the requirements of the application domain. 
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Chapter 2. The Semantics of Constructors 

One of the most often heard complaints about C++ is that the compiler does things behind the programmer's 
back. Conversion operators are the example most often cited. There's a story that Jerry Schwarz, the 
architect of the iostream library, tells about his first attempt to support a scalar test of an iostream class 
object such as 

if ( cin ) ...  

For cin to evaluate to a true/false scalar value, Jerry first defined an operator int() conversion operator. 
This worked fine in well-behaved instances such as this example, but it behaved in a somewhat surprising 
manner under the following programmer error: 

// oops: meant cout, not cin  
cin << intVal;  

The programmer, of course, meant cout not cin. The type-safe nature of the class hierarchy is supposed to 
catch this misapplication of the output operator. The compiler, however, in a somewhat maternalistic way, 
prefers to find a correct interpretation, if there is one, rather than flag the program as bad. In this case, the 
built-in left-shift operator can be applied if only cin is convertible to an integral value. The compiler checks 
the available conversion operators. It finds the operator int() instance, the very thing it was looking for. 
The left-shift operator can now be applied—if not successfully, at least legally: 

// oops: not quite what the programmer intended  
int temp = cin.operator int();  
temp << intVal;  

Jerry resolved this unexpected behavior by replacing the operator int() instance with operator void*
(). This kind of error is still sometimes referred to jokingly as a Schwarz Error. While errors of this sort are 
an embarrassment, the absence of an implicit class conversion facility would be sorely missed. The example 
of the original String class is cited in [STROUP94], p. 83, as motivation: Without implicit conversion support, 
the String library would have had to replicate all the C library functions that were expecting a string. [1] 

[1] Interestingly enough, the standard C++ library string class does not provide an implicit conversion operator; 
rather, it provides a named instance the user must explicitly invoke. 

Among many programmers, the uneasy feeling persists that a user-defined conversion operator applied 
implicitly by the compiler is as likely as not to result in a Schwarz Error. The keyword explicit, in fact, was 
introduced into the language in order to give the programmer a method by which to suppress application of a 
single argument constructor as a conversion operator. Although it is easy (from a distance, anyway) to be 
amused by tales of the Schwarz Error, conversion operators in practice are difficult to use in a predictable, 
well-behaved manner. In this case, programmers are, I think, warranted in their concern. Introduction of 
conversion operators should be made judiciously, tested rigorously, and, at the first sign of unusual program 
activity, brought in for questioning. 

The problem, however, is more in the nature of the compiler's taking your intentions far too literally than of 
its actually doing something behind your back—although it is often difficult to convince a programmer bitten 
by a Schwarz Error of this. "Behind the back" type of activities are much more likely to occur in support of 
memberwise initialization or in the application of what is referred to as the named return value optimization 
(NRV). In this chapter, I look at compiler "meddlings" in terms of object construction and the impact that has 
on the form and performance of our programs. 
Ru-Brd  

Ru-Brd  

2.1 Default Constructor Construction 

The C++ Annotated Reference Manual (ARM) [ELLIS90] (Section 12.1) tells us that "default constructors…are 
generated (by the compiler) where needed…." The crucial word here is needed—needed by whom and to do 
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what? Consider, for example, the following program fragment: 

class Foo { public: int val; Foo *pnext; };  
 
void foo_bar()  
{  
   // Oops:  program needs bar's members zeroed out  
   Foo bar;  
   if ( bar.val || bar.pnext )  
      // ... do something  
   // ...  
}  

In this example, correct program semantics requires of Foo a default constructor that initializes its two 
members to zero. Does this fragment, then, fulfill the requirement of needed as stated in the ARM? The short 
answer is no. The distinction is that between the needs of the program and the needs of the implementation. 
A program's need for a default constructor is the responsibility of the programmer; in this case, the individual 
who designed class Foo. [2] A default constructor is not synthesized for this code fragment. 

[2] Global objects are guaranteed to have their associated memory "zeroed out" at program start-up. Local objects 
allocated on the program stack and heap objects allocated on the free-store do not have their associated memory 
zeroed out; rather, the memory retains the arbitrary bit pattern of its previous use. 

When is a default constructor synthesized, then? Only when the implementation needs it. Moreover, the 
synthesized constructor performs only those activities required by the implementation. That is, even if there 
were a need to synthesize a default constructor for class Foo, that constructor would not include code to zero 
out the two data members val and pnext. For the previous program fragment to execute correctly, the 
designer of class Foo needs to provide an explicit default constructor that properly initializes the class's two 
members. 

The Standard has refined the discussion in the ARM, although the behavior, in practice, remains the same. 
The Standard states [ISO-C++95] (also Section 12.1) the following: 

If there is no user-declared constructor for class X, a default constructor is implicitly declared…. 
A constructor is trivial if it is an implicitly declared default constructor…. 

The standard then goes on to iterate the conditions under which the implicit default constructor is considered 
trivial. A nontrivial default constructor is one that in the ARM's terminology is needed by the implementation 
and, if necessary, is synthesized by the compiler. The next four sections look at the four conditions under 
which the default constructor is nontrivial. 

Member Class Object with Default Constructor 

If a class without any constructors contains a member object of a class with a default constructor, the implicit 
default constructor of the class is nontrivial and the compiler needs to synthesize a default constructor for the 
containing class. This synthesis, however, takes place only if the constructor actually needs to be invoked. 

An interesting question, then: Given the separate compilation model of C++, how does the compiler prevent 
synthesizing multiple default constructors, for example, one for file A.C and a second for file B.C? In practice, 
this is solved by having the synthesized default constructor, copy constructor, destructor, and/or assignment 
copy operator defined as inline. An inline function has static linkage and is therefore not visible outside the 
file within which it is synthesized. If the function is too complex to be inlined by the implementation, an 
explicit non-inline static instance is synthesized. (Inline functions are discussed in more detail in Section 4.5.) 

For example, in the following code fragment, the compiler synthesizes a default constructor for class Bar: 

class Foo { public: Foo(), Foo( int ) ... };  
 
class Bar { public: Foo foo; char *str; };  
 
void foo_bar() {  
   Bar bar; // Bar::foo must be initialized here  
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   if ( str ) { } ...  
}  

The synthesized default constructor contains the code necessary to invoke the class Foo default constructor 
on the member object Bar::foo, but it does not generate any code to initialize Bar::str. Initialization of 
Bar::foo is the compiler's responsibility; initialization of Bar::str is the programmer's. The synthesized 
default constructor might look as follows: [3] 

[3] To simplify our discussion, these examples ignore the insertion of the implicit this pointer.

 

// possible synthesis of Bar default constructor  
// invoke Foo default constructor for member foo  
inline  
Bar::Bar()  
{  
   // Pseudo C++ Code  
   foo.Foo::Foo();  
}  

Again, note that the synthesized default constructor meets only the needs of the implementation, not the 
needs of the program. For the program fragment to execute correctly, the character pointer str also needs 
to be initialized. Let's assume the programmer provides for the initialization of str via the following default 
constructor: 

// programmer defined default constructor  
Bar::Bar() { str = 0; }  

Now the program need is fulfilled, but the implementation need to initialize the member object foo still 
remains. Because the default constructor is explicitly defined, the compiler cannot synthesize a second 
instance to do its work. Oh, bother, as Winnie the Pooh might say. What's an implementation to do? 

Consider the case of each constructor defined for a class containing one or more member class objects for 
which a default constructor must be invoked. In this case, the compiler augments the existing constructors, 
inserting code that invokes the necessary default constructors prior to the execution of the user code. In the 
previous example, the resulting augmented constructor might look as follows: 

// Augmented default constructor  
// Pseudo C++ Code  
Bar::Bar()  
{  
   foo.Foo::Foo(); // augmented compiler code  
   str = 0;        // explicit user code  
}  

What happens if there are multiple class member objects requiring constructor initialization? The language 
requires that the constructors be invoked in the order of member declaration within the class. This is 
accomplished by the compiler. It inserts code within each constructor, invoking the associated default 
constructors for each member in the order of member declaration. This code is inserted just prior to the 
explicitly supplied user code. For example, say we have the following three classes: 

class Dopey   { public: Dopey(); ... };  
class Sneezy  { public: Sneezy( int ); Sneezy(); ... };  
class Bashful { public: Bashful() ... };  

and a containing class Snow_White: 

class Snow_White {  
public:  
   Dopey dopey;  
   Sneezy sneezy;  
   Bashful bashful;  
   // ...  
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private:  
   int mumble;  
};  

If Snow_White does not define a default constructor, a nontrivial default constructor is synthesized that 
invokes the three default constructors of Dopey, Sneezy, and Bashful in that order. If, on the other hand, 
Snow_White defines the following default constructor: 

// programmer coded default constructor  
Snow_White::Snow_White() : sneezy( 1024 )  
{  
   mumble = 2048;  
}  

it is augmented as follows: 

// Compiler augmented default constructor  
// Pseudo C++ Code  
Snow_White::Snow_White()  
{  
   // insertion of member class object  
   // constructor invocations  
   dopey.Dopey::Dopey();  
   sneezy.Sneezy::Sneezy( 1024 );  
   bashful.Bashful::Bashful();  
 
   // explicit user code  
   mumble = 2048;  
}  

The interaction of invoking implicit default constructors with that of invoking constructors explicitly listed 
within the member initialization list is discussed in Section 2.4. 

Base Class with Default Constructor 

Similarly, if a class without any constructors is derived from a base class containing a default constructor, the 
default constructor for the derived class is considered nontrivial and so needs to be synthesized. The 
synthesized default constructor of the derived class invokes the default constructor of each of its immediate 
base classes in the order of their declaration. To a subsequently derived class, the synthesized constructor 
appears no different than that of an explicitly provided default constructor. 

What if the designer provides multiple constructors but no default constructor? The compiler augments each 
constructor with the code necessary to invoke all required default constructors. However, it does not 
synthesize a default constructor because of the presence of the other user-supplied constructors. If member 
class objects with default constructors are also present, these default constructors are also invoked—after the 
invocation of all base class constructors. 

Class with a Virtual Function 

There are two additional cases in which a synthesized default constructor is needed: 

1. The class either declares (or inherits) a virtual function 

2. The class is derived from an inheritance chain in which one or more base classes are virtual 

In both cases, in the absence of any declared constructors, implementation bookkeeping necessitates the 
synthesis of a default constructor. For example, given the following code fragment: 

class Widget {  
public:  
   virtual void flip() = 0;  
   // ...  
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};  
 
void flip( const Widget& widget ) { widget.flip(); }  
 
// presuming Bell and Whistle are derived from Widget  
void foo() {  
   Bell b;  Whistle w;  
   flip( b );  
   flip( w );  
}  

the following two class "augmentations" occur during compilation: 

1. A virtual function table (referred to as the class vtbl in the original cfront implementation) is generated 
and populated with the addresses of the active virtual functions for that class. 

2. Within each class object, an additional pointer member (the vptr) is synthesized to hold the address of 
the associated class vtbl. 

In addition, the virtual invocation of widget.flip() is rewritten to make use of widget's vptr and flip
()'s entry into the associated vtbl: 

   // simplified transformation of virtual invocation:  
widget.flip()  
   ( * widget.vptr[ 1 ] ) ( &widget )  

where 

1 represents flip()'s fixed index into the virtual table, and 

&widget represents the this pointer to be passed to the particular invocation of flip(). 

For this mechanism to work, the compiler must initialize the vptr of each Widget object (or the object of a 
class derived from Widget) with the address of the appropriate virtual table. For each constructor the class 
defines, the compiler inserts code that does just that (this is illustrated in Section 5.2). In classes that do not 
declare any constructors, the compiler synthesizes a default constructor in order to correctly initialize the vptr
of each class object. 

Class with a Virtual Base Class 

Virtual base class implementations vary widely across compilers. However, what is common to each 
implementation is the need to make the virtual base class location within each derived class object available 
at runtime. For example, in the following program fragment: 

class X { public: int i; };  
class A : public virtual X   { public: int j; };  
class B : public virtual X   { public: double d; };  
class C : public A, public B { public: int k; };  
// cannot resolve location of pa->X::i at compile-time  
void foo( const A* pa ) { pa->i = 1024; }  
 
main() {  
   foo( new A );  
   foo( new C );  
   // ...  
}  

the compiler cannot fix the physical offset of X::i accessed through pa within foo(), since the actual type 
of pa can vary with each of foo()'s invocations. Rather, the compiler must transform the code doing the 
access so that the resolution of X::i can be delayed until runtime. In the original cfront implementation, for 
example, this is accomplished by inserting a pointer to each of the virtual base classes within the derived 
class object. All reference and pointer access of a virtual base class is achieved through the associated 
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pointer. In our example, foo() might be rewritten as follows under this implementation strategy: 

// possible compiler transformation  
void foo( const A* pa ) { pa->__vbcX->i = 1024; }  

where __vbcX represents the compiler-generated pointer to the virtual base class X. 

As you've no doubt guessed by now, the initialization of __vbcX (or whatever implementation mechanism is 
used) is accomplished during the construction of the class object. For each constructor the class defines, the 
compiler inserts code that permits runtime access of each virtual base class. In classes that do not declare 
any constructors, the compiler needs to synthesize a default constructor. 

Summary 

There are four characteristics of a class under which the compiler needs to synthesize a default constructor 
for classes that declare no constructor at all. The Standard refers to these as implicit, nontrivial default 
constructors. The synthesized constructor fulfills only an implementation need. It does this by invoking 
member object or base class default constructors or initializing the virtual function or virtual base class 
mechanism for each object. Classes that do not exhibit these characteristics and that declare no constructor 
at all are said to have implicit, trivial default constructors. In practice, these trivial default constructors are 
not synthesized. 

Within the synthesized default constructor, only the base class subobjects and member class objects are 
initialized. All other nonstatic data members, such as integers, pointers to integers, arrays of integers, and so 
on, are not initialized. These initializations are needs of the program, not of the implementation. If there is a 
program need for a default constructor, such as initializing a pointer to 0, it is the programmer's responsibility
to provide it in the course of the class implementation. 

Programmers new to C++ often have two common misunderstandings: 

1. That a default constructor is synthesized for every class that does not define one 

2. That the compiler-synthesized default constructor provides explicit default initializers for each data 
member declared within the class 

As you have seen, neither of these is true. 

 
Ru-Brd  

Ru-Brd  

2.2 Copy Constructor Construction 

There are three program instances in which a class object is initialized with another object of its class. The 
most obvious instance, of course, is an object's explicit initialization, such as 

   class X { ... };  
   X x;  
 
   // explicit initialization of one class object with  
another  
   X xx = x;  

The other two are when an object is passed as an argument to a function, such as 

extern void foo( X x );  
 
void bar()  
{  
   X xx;  
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   // implicit initialization of foo()'s  
   // first argument with xx  
   foo( xx );  
 
   // ...  
}  

and when a function returns a class object, such as 

X  
foo_bar()  
{  
   X xx;  
   // ...;  
   return xx;  
 }  

Say the class designer explicitly defines a copy constructor (a constructor requiring a single argument of its 
class type), such as either of the following: 

// examples of user defined copy constructors  
// may be multi-argument provided each second  
// and subsequent argument is provided with a  
// default value  
 
X::X( const X& x );  
Y::Y( const Y& y, int = 0 );  

In this case, that constructor is invoked, under most circumstances, in each program instance where 
initialization of one class object with another occurs. This may result in the generation of a temporary class 
object or the actual transformation of program code (or both). 

Default Memberwise Initialization 

What if the class does not provide an explicit copy constructor? Each class object initialized with another 
object of its class is initialized by what is called default memberwise initialization. Default memberwise 
initialization copies the value of each built-in or derived data member (such as a pointer or an array) from the
one class object to another. A member class object, however, is not copied; rather, memberwise initialization 
is recursively applied. For example, consider the following class declaration: 

class String {  
public:  
   // ... no explicit copy constructor  
private:  
   char *str;  
   int   len;  
};  

The default memberwise initialization of one String object with another, such as 

String noun( "book" );  
String verb = noun;  

is accomplished as if each of its members was individually initialized in turn: 

// semantic equivalent of memberwise initialization  
verb.str = noun.str;  
verb.len = noun.len;  

If a String object is declared as a member of another class, such as the following: 

Page 37 of 182

22/08/2003file://C:\Documents%20and%20Settings\Mark\Local%20Setting...



class Word {  
public:  
   // ...no explicit copy constructor  
private:  
   int     _occurs;  
   String  _word;  
};  

then the default memberwise initialization of one Word object with another copies the value of its built-in 
member _occurs and then recursively applies memberwise initialization to its class String member object 
_word. 

How is this operation in practice carried out? The original ARM tells us: 

Conceptually, for a class X [this operation is] implemented by…a copy constructor. 

The operative word here is conceptually. The commentary that follows explains: 

In practice, a good compiler can generate bitwise copies for most class objects since they have 
bitwise copy semantics…. 

That is, a copy constructor is not automatically generated by the compiler for each class that does not 
explicitly define one. Rather, as the ARM tells us, 

Default constructors and copy constructors…are generated (by the compiler) where needed. 

Needed in this instance means when the class does not exhibit bitwise copy semantics. The Standard retains 
the meaning of the ARM, while formalizing its discussion (my comments are inserted within parentheses) as 
follows: 

A class object can be copied in two ways, by initialization (what we are concerned with here)…
and by assignment (treated in Chapter 5). Conceptually (my italics), these two operations are 
implemented by a copy constructor and copy assignment operator. 

As with the default constructor, the Standard speakers of an implicitly declared and implicitly defined copy 
constructor if the class does not declare one. As before, the Standard distinguishes between a trivial and 
nontrivial copy constructor. It is only the nontrivial instance that in practice is synthesized within the 
program. The criteria for determining whether a copy constructor is trivial is whether the class exhibits 
bitwise copy semantics. In the next section, I look at what it means to say that a class exhibits bitwise copy 
semantics. 

Bitwise Copy Semantics 

In the following program fragment: 

#include "Word.h"  
 
Word noun( "block" );  
 
void foo()  
{  
   Word verb = noun;  
   // ...  
}  

it is clear that verb is initialized with noun. But without looking at the declaration of class Word, it is not 
possible to predict the program behavior of that initialization. If the designer of class Word defines a copy 
constructor, the initialization of verb invokes it. If, however, the class is without an explicit copy constructor, 
the invocation of a compiler-synthesized instance depends on whether the class exhibits bitwise copy 
semantics. For example, given the following declaration of class Word: 
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// declaration exhibits bitwise copy semantics  
class Word {  
public:  
   Word( const char* );  
   ~Word() { delete [] str; }  
   // ...  
private:  
   int   cnt;  
   char *str;  
};  

a default copy constructor need not be synthesized, since the declaration exhibits bitwise copy semantics, 
and the initialization of verb need not result in a function call. [4] However, the following declaration of class 
Word does not exhibit bitwise copy semantics: 

[4] Of course, the program fragment will execute disastrously given this declaration of class Word. (Both the local 
and global object now address the same character string. Prior to exiting foo(), the destructor is applied to the 
local object, thus the character string is deleted. The global object now addresses garbage.) The aliasing problem 
with regard to member str can be solved only by overriding default memberwise initialization with an explicit copy 
constructor implemented by the designer of the class (or by disallowing copying altogether). This, however, is 
independent of whether a copy constructor is synthesized by the compiler. 

// declaration does not exhibits bitwise copy semantics  
class Word {  
public:  
   Word( const String& );  
   ~Word();  
   // ...  
private:  
   int    cnt;  
   String str;  
};  

where String declares an explicit copy constructor: 

class String {  
public:  
   String( const char * );  
   String( const String& );  
   ~String();  
   // ...  
};  

In this case, the compiler needs to synthesize a copy constructor in order to invoke the copy constructor of 
the member class String object: 

// A synthesized copy constructor  
// Pseudo C++ Code  
inline Word::Word( const Word& wd )  
{  
   str.String::String( wd.str );  
   cnt = wd.cnt;  
}  

It is important to note that in the case of the synthesized copy constructor, the nonclass members of types 
such as integers, pointers, and arrays are also copied, as one would expect. 

Bitwise Copy Semantics—Not! 

When are bitwise copy semantics not exhibited by a class? There are four instances: 

1. When the class contains a member object of a class for which a copy constructor exists (either 
explicitly declared by the class designer, as in the case of the previous String class, or synthesized by 
the compiler, as in the case of class Word) 
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2. When the class is derived from a base class for which a copy constructor exists (again, either explicitly 
declared or synthesized) 

3. When the class declares one or more virtual functions 

4. When the class is derived from an inheritance chain in which one or more base classes are virtual 

In instances 1 and 2, the implementation needs to insert invocations of the member or base class copy 
constructors inside the synthesized copy constructor. The synthesized copy constructor for class Word in the 
previous section illustrates case 1. Cases 3 and 4 are slightly more subtle. I briefly look at those next. 

Resetting the Virtual Table Pointer 

Recall that two program "augmentations" occur during compilation whenever a class declares one or more 
virtual functions. 

A virtual function table that contains the address of each active virtual function associated with that 
class (the vtbl) is generated. 

A pointer to the virtual function table is inserted within each class object (the vptr). 

Obviously, things would go terribly wrong if the compiler either failed to initialize or incorrectly initialized the 
vptr of each new class object. Hence, once the compiler introduces a vptr into a class, the affected class no 
longer exhibits bitwise semantics. Rather, the implementation now needs to synthesize a copy constructor in 
order to properly initialize the vptr. Here's an example. 

First, I define a two-class hierarchy of ZooAnimal and Bear: 

class ZooAnimal {  
public:  
   ZooAnimal();  
   virtual ~ZooAnimal();  
 
   virtual void animate();  
   virtual void draw();  
   // ...  
private:  
   // data necessary for ZooAnimal's  
   // version of animate() and draw()  
};  
 
class Bear : public ZooAnimal {  
public:  
   Bear();  
 
   void animate();  
   void draw();  
   virtual void dance();  
   // ...  
private:  
   // data necessary for Bear's version  
   // of animate(), draw(), and dance()  
};  

The initialization of one ZooAnimal class object with another or one Bear class object with another is 
straightforward and could actually be im-plemented with bitwise copy semantics (apart from possible pointer 
member aliasing, which for simplicity is not considered). For example, given 

Bear yogi;  
Bear winnie = yogi;  

yogi is initialized by the default Bear constructor. Within the constructor, yogi's vptr is initialized to address
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the Bear class virtual table with code inserted by the compiler. It is safe, therefore, to simply copy the value 
of yogi's vptr into winnie's. The copying of an object's vptr value, however, ceases to be safe when an 
object of a base class is initialized with an object of a class derived from it. For example, given 

ZooAnimal franny = yogi;  

the vptr associated with franny must not be initialized to address the Bear class virtual table (which would 
be the result if the value of yogi's vptr were used in a straightforward bitwise copy). Otherwise the 
invocation of draw() in the following program fragment would blow up when franny were passed to it: [5] 

[5] The draw() virtual function call through franny must invoke the ZooAnimal instance rather than the Bear 
instance, even though franny is initialized with the Bear object yogi because franny is a ZooAnimal object. In 
effect, the Bear portion of yogi is sliced off when franny is initialized. Were franny declared a reference (or were 
it a pointer initialized with the address of yogi), then invocations of draw() through franny would invoke the Bear 
instance. This is discussed in Section 1.3. 

   void draw( const ZooAnimal& zoey ) { zoey.draw(); }  
   void foo() {  
      // franny's vptr must address the ZooAnimal virtual  
table  
      // not the Bear virtual table yogi's vptr addresses  
      ZooAnimal franny = yogi;  
 
      draw( yogi );   // invoke Bear::draw()  
      draw( franny ); // invoke ZooAnimal::draw()  
 
   }  

That is, the synthesized ZooAnimal copy constructor explicitly sets the object's vptr to the ZooAnimal class 
virtual table rather than copying it from the right-hand class object. 

Handling the Virtual Base Class Subobject 

The presence of a virtual base class also requires special handling. The initialization of one class object with 
another in which there is a virtual base class subobject also invalidates bitwise copy semantics. 

Each implementation's support of virtual inheritance involves the need to make each virtual base class 
subobject's location within the derived class object available at runtime. Maintaining the integrity of this 
location is the compiler's responsibility. Bitwise copy semantics could result in a corruption of this location, so 
the compiler must intercede with its own synthesized copy constructor. For example, in the following 
declaration, ZooAnimal is derived as a virtual base class of Raccoon: 

class Raccoon : public virtual ZooAnimal {  
public:  
   Raccoon() { /* private data initialization */ }  
   Raccoon( int val ) { /* private data initialization */ }  
   // ...  
private:  
   // all necessary data  
};  

Compiler-generated code to invoke ZooAnimal's default constructor, initialize Raccoon's vptr, and locate the 
ZooAnimal subobject within Raccoon is inserted as a prefix within the two Raccoon constructors. 

What about memberwise initialization? The presence of a virtual base class invalidates bitwise copy 
semantics. Again, the problem is not when one object of a class is initialized with a second object of the same 
exact class. It is when an object is initialized with an object of one of its derived classes. For example, 
consider the case in which a Raccoon object is initialized with a RedPanda object, where RedPanda is declared 
as follows: 

class RedPanda : public Raccoon {  
public:  
   RedPanda() { /* private data initialization */ }  
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   RedPanda( int val ) { /* private data initialization */ }  
   // ...  
private:  
   // all necessary data  
};  

Again, in the case of initializing one Raccoon object with another, simple bitwise copy is sufficient: 

// simple bitwise copy is sufficient  
Raccoon rocky;  
Raccoon little_critter = rocky;  

However, an attempt to initialize little_critter with a RedPanda object requires the compiler to 
intercede if subsequent programmer attempts to access its ZooAnimal subobject are to execute properly (not 
an unreasonable programmer expectation!): 

// simple bitwise copy is not sufficient  
// compiler must explicitly initialize little_critter's  
// virtual base class pointer/offset  
 
RedPanda   little_red;  
Raccoon    little_critter = little_red;  

In this case, to achieve the correct initialization of little_critter, the compiler must synthesize a copy 
constructor, inserting code to initialize the virtual base class pointer/offset (or simply being sure that it not be
reset), performing the necessary memberwise initializations of its members, and other memory tasks. 
(Virtual base classes are discussed in more detail in Section 3.4.) 

In the following case, the compiler cannot know whether bitwise copy semantics hold, since it cannot know 
(without flow analysis) whether the Raccoon pointer addresses an actual Raccoon object or an object of a 
derived class: 

// simple bitwise copy may or may not be sufficient  
Raccoon *ptr;  
Raccoon little_critter = *ptr;  

Here's an interesting question: Should a compiler, in the presence of an initialization in which bitwise copy 
semantics hold, optimize its code generation by suppressing the invocation of the copy constructor if it can 
guarantee the correct equivalent initialization of the object? At least in the case of a synthesized copy 
constructor, the possibility of program side effects is nil and the optimization would seem to make good 
sense. What about in the case of a copy constructor explicitly provided by the class designer? (This is actually 
a rather contentious issue. I return to it at the end of the next section.) 

To summarize: We have looked at the four conditions under which bitwise copy semantics do not hold for a 
class and the default copy constructor, if undeclared, is considered nontrivial. Under these conditions, the 
compiler, in the absence of a declared copy constructor, must synthesize a copy constructor in order to 
correctly implement the initialization of one class object with another. In the next section, the implementation
strategies for invoking the copy constructor and how those strategies affect our programs are discussed. 
Ru-Brd  

Ru-Brd  

2.3 Program Transformation Semantics 

Given the following program fragment: 

#include "X.h"  
 
X foo()  
{  
   X xx;  
   // ...  
   return xx;  
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}  

one might be tempted to categorically assert that 

1. every invocation of foo() returns xx by value, and 

2. if class X defines a copy constructor, that copy constructor is guaranteed to be invoked with each 
invocation of foo(). 

The truth of assertion 1, however, depends on the definition of class X. The truth of assertion 2, although 
partly dependent on the definition of class X, primarily depends on the degree of aggressive optimization 
provided by your C++ compiler. To turn things on their heads, one might even assert that in a high-quality 
C++ implementation, both assertions are always false for nontrivial definitions of class X. The rest of this 
subsection explains why. 

Explicit Initialization 

Given the definition 

X x0;  

the following three definitions each explicitly initialize its class object with x0: 

void foo_bar() {  
   X x1( x0 );  
   X x2 = x0;  
   X x3 = x( x0 );  
   // ...  
}  

The required program transformation is two-fold: 

1. Each definition is rewritten with the initialization stripped out. 

2. An invocation of the class copy constructor is inserted. 

For example, foo_bar() might look as follows after this straightforward, two-fold transformation: 

// Possible program transformation  
// Pseudo C++ Code  
void foo_bar() {  
   X x1;  
   X x2;  
   X x3;  
 
   // compiler inserted invocations  
   // of copy constructor for X  
   x1.X::X( x0 );  
   x2.X::X( x0 );  
   x3.X::X( x0 );  
   // ...  
}  

where the call 

x1.X::X( x0 );  

represents a call of the copy constructor 

X::X( const X& xx );  
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Argument Initialization 

The Standard states (Section 8.5) that passing a class object as an argument to a function (or as that 
function's return value) is equivalent to the following form of initialization: 

X xx = arg;  

where xx represents the formal argument (or return value) and arg represents the actual argument. 
Therefore, given the function 

void foo( X x0 );  

an invocation of the form 

X xx;  
// ...  
foo( xx );  

requires that the local instance of x0 be memberwise initialized with xx. One implementation strategy is to 
introduce a temporary object, initialize it with a call of the copy constructor, and then pass that temporary 
object to the function. For example, the previous code fragment would be transformed as follows: 

// Pseudo C++ code  
// compiler generated temporary  
X __temp0;  
 
// compiler invocation of copy constructor  
__temp0.X::X ( xx );  
 
// rewrite function call to take temporary  
foo( __temp0 );  

This transformation, however, is only half complete as presented. Do you see the remaining problem? It is 
that given foo()'s declaration, the temporary object is first correctly initialized with the class X copy 
constructor and then is bitwise copied into the local instance of x0! Oh, bother. The declaration of foo() 
therefore must also be transformed, with the formal argument from an object changed to a reference of class 
X as follows: 

void foo( X& x0 );  

Were class X to declare a destructor, that destructor would be invoked on the temporary object following the 
call of foo(). 

An alternative implementation is to copy construct the actual argument directly onto its place within the 
function's activation record on the program stack. Prior to the return of the function, the local object's 
destructor, if defined, is applied to it. The Borland C++ compiler, for example, implements this strategy, 
although it provides a compiler option to employ the first strategy previously described for backward 
compatibility with earlier versions of the compiler. 

Return Value Initialization 

Given the following definition of bar(): 

X bar()  
{  
   X xx;  
   // process xx ...  
   return xx;  
}  

you may ask how might bar()'s return value be copy constructed from its local object xx? Stroustrup's 
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solution in cfront is a two-fold transformation: 

1. Add an additional argument of type reference to the class object. This argument will hold the copy 
constructed "return value." 

2. Insert an invocation of the copy constructor prior to the return statement to initialize the added 
argument with the value of the object being returned. 

What about the actual return value, then? A final transformation rewrites the function to have it not return a 
value. The transformation of bar(), following this algorithm, looks like this: 

// function transformation to reflect  
// application of copy constructor  
// Pseudo C++ Code  
void  
bar( X& __result )  
{  
   X xx;  
 
   // compiler generated invocation  
   // of default constructor  
   xx.X::X();  
 
   // ... process xx  
   // compiler generated invocation  
   // of copy constructor  
   __result.X::X( xx );  
 
   return;  
}  

Given this transformation of bar(), the compiler is now required to transform each invocation of bar() to 
reflect its new definition. For example, 

X xx = bar();  

is transformed into the following two statements: 

// note: no default constructor applied  
X xx;  
bar( xx );  

while an invocation such as 

bar().memfunc();  

might be transformed into 

// compiler generated temporary  
X __temp0;  
( bar( __temp0 ), __temp0 ).memfunc();  

Similarly, if the program were to declare a pointer to a function, such as 

X ( *pf )();  
pf = bar;  

that declaration, too, would need to be transformed: 

void ( *pf )( X& );  
pf = bar;  
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Optimization at the User Level 

It was Jonathan Shopiro, I believe, who first noticed a programmer optimization of a function such as bar() 
by defining a "computational" constructor. That is, rather than the programmer's writing 

X bar( const T &y, const T &z )  
{  
   X xx;  
   // ... process xx using y and z  
   return xx;  
}  

which requires xx to be memberwise copied into the compiler-generated __result, Jonathan defined an 
auxiliary constructor that computed the value of xx directly: 

X bar( const T &y, const T &z )  
{  
   return X( y, z );  
}  

This definition of bar(), when transformed, is more efficient: 

// Pseudo C++ Code  
void  
bar( X &__result )  
{  
   __result.X::X( y, z );  
   return;  
}  

since __result is directly computed, rather than copied through an invocation of the copy constructor. One 
criticism of this solution, however, is the possible proliferation of specialized computational constructors. 
(Class design on this level becomes driven more by efficiency concerns than by the underlying abstraction the
class is intended to support.) 

Optimization at the Compiler Level 

In a function such as bar(), where all return statements return the same named value, it is possible for the 
compiler itself to optimize the function by substituting the result argument for the named return value. For 
example, given the original definition of bar(): 

X bar()  
{  
   X xx;  
   // ... process xx  
   return xx;  
}  

__result is substituted for xx by the compiler: 

void  
bar( X &__result )  
{  
   // default constructor invocation  
   // Pseudo C++ Code  
   __result.X::X();  
 
   // ... process in __result directly  
 
   return;  
}  
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This compiler optimization, sometimes referred to as the Named Return Value (NRV) optimization, is 
described in Section 12.1.1c of the ARM (pages 300–303). The NRV optimization is now considered an 
obligatory Standard C++ compiler optimization, although that requirement, of course, falls outside the formal 
Standard. To get a sense of the performance gain, consider the following class: 

class test {  
   friend test foo( double );  
public:  
   test()  
       { memset( array, 0, 100*sizeof( double )); }  
private:  
   double array[ 100 ];  
};  

Consider also the following function, which creates, modifies, and returns a test class object: 

test  
foo( double val )  
{  
   test local;  
 
   local.array[ 0 ] = val;  
   local.array[ 99 ] = val;  
 
   return local;  
}  

and a main() routine that calls the function 10 million times: 

main()  
{  
   for ( int cnt = 0; cnt < 10000000; cnt++ )  
       { test t = foo( double( cnt )); }  
   return 0;  
}  

This first version of the program does not apply the NRV optimization because of the absence of a copy 
constructor for the test class. The second version adds an inline copy constructor: 

inline  
test::test( const test &t )  
{  
   memcpy( this, &t, sizeof( test ));  
}  

The presence of the copy constructor "turns on" the NRV optimization within the C++ compiler. (The 
optimization is not performed by a separate optimizer. In this case, the optimizer's effect on the performance 
is negligible.) Here are the timings (perhaps as remarkable as the performance improvement is the disparity 
in performance between the two compilers): 

Named Return Value (NRV) Optimization  
– – – – – – – – – – – – – – – – – – –  
 
    NRV Not Applied     NRV Applied      NRV Applied + -O  
CC     1:48.52             46.73              46.05  
NCC    3:00.57           1:33.48            1.32.36  

Although the NRV optimization provides significant performance improvement, there are several criticisms of 
this approach. One is that because the optimization is done silently by the compiler, whether it was actually 
performed is not always clear (particularly since few compilers document the extent of its implementation or 
whether it is implemented at all). A second is that as the function becomes more complicated, the 
optimization becomes more difficult to apply. In cfront, for example, the optimization is applied only if all the 
named return statements occur at the top level of the function. Introduce a nested local block with a return 
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statement, and cfront quietly turns off the optimization. Programmers arguing this case recommend the 
specialized constructor strategy instead. 

These two criticisms concern the compiler's possibly failing to apply the optimization. A third criticism takes 
the opposite position: Some programmers actually criticize the application of the optimization. Can you see 
what their complaint might be? For example, imagine you had instrumented your copy constructor such that 
your application depended on the symmetry of its invocation for each destructor invoked on an object 
initialized by copying; for example, 

void foo()  
{  
   // copy constructor expected here  
   X xx = bar();  
   // ...  
   // destructor invoked here  
}  

In this case, the symmetry is broken by the optimization, and the program, albeit faster, fails. Is the compiler
at fault here for suppressing the copy constructor invocation? That is, must the copy constructor be invoked 
in every program situation in which the initialization of an object is achieved through copying? 

Such a requirement would levy a possibly severe performance penalty on a great many programs. For 
example, although the following three initializations are semantically equivalent: 

X xx0( 1024 );  
X xx1 = X( 1024 );  
X xx2 = ( X ) 1024;  

in the second and third instances, the syntax explicitly provides for a two-step initialization: 

1. Initialize a temporary object with 1024. 

2. Copy construct the explicit object with the temporary object. 

That is, whereas xx0 is initialized by a single constructor invocation 

// Pseudo C++ Code  
xx0.X::X( 1024 );  

a strict implementation of either xx1 or xx2 results in two constructor invocations, a temporary object, and a 
call to the destructor of class X on that temporary object: 

// Pseudo C++ Code  
X __temp0;  
__temp0.X::X( 1024 );  
xx1.X::X( __temp0 );  
__temp0.X::~X();  

The Standards committee has been debating the legality of eliminating the copy constructor invocation. As of 
this writing, it has not reached a final decision. However, according to Josee Lajoie, vice chairperson of the 
committee and chairperson of the Core Language group, the NRV optimization is considered too important to 
disallow. Apparently the debate has wound its way down to two somewhat esoteric cases: whether the 
elimination of the copy constructor should also be allowed in the copying of static and local objects. For 
example, given the following code fragment: 

Thing outer;  
{  
   // can inner be eliminated?  
   Thing inner( outer );  
}  

Page 48 of 182

22/08/2003file://C:\Documents%20and%20Settings\Mark\Local%20Setting...



should inner be copy constructed from outer or can inner simply be eliminated? (The question can 
similarly be asked regarding the copy initialization of static with extern objects.) According to Josee, the 
elimination of the copy constructor for static objects is almost certainly not to be allowed. The outcome for 
automatic objects such as inner, however, remains unresolved. 

In general, then, the language permits the compiler a great deal of lee-way regarding the initialization of one 
class object with another. The benefit of this, of course, is significantly more efficient code generation. The 
drawback is that you cannot safely program side effects into your copy constructor and depend on their being 
executed. 

The Copy Constructor: To Have or To Have Not? 

Given the following straightforward 3D point class: 

class Point3d {  
public:  
   Point3d( float x, float y, float z );  
   // ...  
private:  
   float _x, _y, _z;  
};  

should the class designer provide an explicit copy constructor? 

The default copy constructor is considered trivial. There are no member or base class objects with a copy 
constructor that need to be invoked. Nor is there a virtual base class or virtual function associated with the 
class. So, by default, a memberwise initialization of one Point3d class object with another results in a bitwise 
copy. This is efficient. But is it safe? 

The answer is yes. The three coordinate members are stored by value. Bitwise copy results in neither a 
memory leak nor address aliasing. Thus it is both safe and efficient. 

So, how would you answer the question, should the class designer provide an explicit copy constructor? The 
obvious answer, of course, is no. There is no reason to provide an instance of the copy constructor, as the 
compiler automatically does the best job for you. The more subtle answer is to ask whether you envision the 
class's requiring a good deal of memberwise initialization, in particular, returning objects by value? If the 
answer is yes, then it makes excellent sense to provide an explicit inline instance of the copy constructor—
that is, provided your compiler provides the NRV optimization. 

For example, the Point3d class supports the following set of functions: 

Point3d operator+( const Point3d&, const Point3d& );  
Point3d operator-( const Point3d&, const Point3d& );  
Point3d operator*( const Point3d&, int );  
etc.  

all of which fit nicely into the NRV template 

{  
   Point3d result;  
   // compute result  
   return result  
}  

The simplest method of implementing the copy constructor is as follows: 

Point3d::Point3d( const Point3d &rhs )  
{  
   _x = rhs._x;  
   _y = rhs._y;  
   _z = rhs._z;  
};  
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This is okay, but use of the C library memcpy() function would be more efficient: 

Point3d::Point3d( const Point3d &rhs )  
{  
   memcpy( this, &rhs, sizeof( Point3d );  
};  

Use of both memcpy() and memset(), however, works only if the classes do not contain any compiler-
generated internal members. If the Point3d class declares one or more virtual functions or contains a virtual 
base class, use of either of these functions will result in overwriting the values the compiler set for these 
members. For example, given the following declaration: 

class Shape {  
public:  
   // oops: this will overwrite internal vptr!  
   Shape() { memset( this, 0, sizeof( Shape ));  
   virtual ~Shape();  
   // ...  
};  

the compiler augmentation for the constructor generally looks like this: 

// Expansion of constructor  
// Pseudo C++ Code  
 
Shape::Shape()  
{  
   // vptr must be set before user code executes  
   __vptr__Shape = __vtbl__Shape;  
 
   // oops: memset zeros out value of vptr  
   memset( this, 0, sizeof( Shape ));  
};  

As you can see, correct use of the memset() and memcpy() functions requires some knowledge of the C++ 
Object Model semantics! 

Summary 

Application of the copy constructor requires the compiler to more or less transform portions of your program. 
In particular, consider a function that returns a class object by value for a class in which a copy constructor is 
either explicitly defined or synthesized. The result is profound program transformations both in the definition 
and use of the function. Also, the compiler optimizes away the copy constructor invocation where possible, 
replacing the NRV with an additional first argument within which the value is stored directly. Programmers 
who understand these transformations and the likely conditions for copy constructor optimization can better 
control the runtime performance of their programs. 

 
Ru-Brd  

Ru-Brd  

2.4 Member Initialization List 

When you write a constructor, you have the option of initializing class members either through the member 
initialization list or within the body of the constructor. Except in four cases, which one you choose is not 
significant. 

In this section, I first clarify when use of the initialization list is "significant" and then explain what actually 
gets done with that list internally. I then look at a number of possible, subtle pitfalls. 

You must use the member initialization list in the following cases in order for your program to compile: 
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1. When initializing a reference member 

2. When initializing a const member 

3. When invoking a base or member class constructor with a set of arguments 

In the fourth case, the program compiles and executes correctly. But it does so inefficiently. For example, 
given 

class Word {  
   String _name;  
   int _cnt;  
public:  
   // not wrong, just naive ...  
   Word() {  
      _name = 0;  
      _cnt = 0;  
   }  
};  

this implementation of the Word constructor initializes _name once, then overrides the initialization with an 
assignment, resulting in the creation and the destruction of a temporary String object. Was this intentional? 
Unlikely. Does the compiler generate a warning? I'm not aware of any that does. Here is the likely internal 
augmentation of this constructor: 

// Pseudo C++ Code  
Word::Word( /* this pointer goes here */ )  
{  
   // invoke default String constructor  
   _name.String::String();  
 
   // generate temporary  
   String temp = String( 0 );  
 
   // memberwise copy _name  
   _name.String::operator=( temp );  
 
   // destroy temporary  
   temp.String::~String();  
 
   _cnt = 0;  
}  

Had the code been reviewed by the project and corrected, a significantly more efficient implementation would 
have been coded: 

// preferred implementation  
Word::Word : _name( 0 )  
{  
   _cnt = 0;  
}  

This expands to something like this: 

// Pseudo C++ Code  
Word::Word( /* this pointer goes here */ )  
{  
   // invoke String( int ) constructor  
   _name.String::String( 0 );  
   _cnt = 0;  
}  

This pitfall, by the way, is most likely to occur in template code of this form: 
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template < class type >  
foo< type >::foo( type t )  
{  
   // may or may not be a good idea  
   // depending on the actual type of type  
   _t = t;  
}  

This has led some programmers to insist rather aggressively that all member initialization be done within the 
member initialization list, even the initialization of a well-behaved member such as _cnt: 

// some insist on this coding style  
Word::Word()  
   : _cnt( 0 ), _name( 0 )  
   {}  

A reasonable question to ask at this point is, what actually happens to the member initialization list? Many 
people new to C++ confuse syntax of the list with that of a set of function calls, which of course it is not. 

The compiler iterates over the initialization list, inserting the initializations in the proper order within the 
constructor prior to any explicit user code. For example, the previous Word constructor is expanded as 
follows: 

// Pseudo C++ Code  
Word::Word( /* this pointer goes here */ )  
{  
   _name.String::String( 0 );  
   _cnt = 0;  
}+  

Hmm-m-m. It looks exactly the same as when _cnt was assigned within the body of the constructor. 
Actually, there is a subtlety to note here: The order in which the list entries are set down is determined by 
the declaration order of the members within the class declaration, not the order within the initialization list. In
this case, _name is declared before _cnt in Word and so is placed first. 

This apparent anomaly between initialization order and order within the initialization list can lead to the 
following nasty pitfall: 

class X {  
   int i;  
   int j;  
public:  
   // oops!  do you see the problem?  
   X( int val )  
      : j( val ), i( j )  
      {}  
   ...  
};  

The difficulty with this bug is how difficult it is even to see it. Compilers should issue a warning, yet there is 
only one that I am aware of that does (g++, the GNU C++ compiler). [6] I recommend always placing the 
initialization of one member with another (if you really feel it is necessary) within the body of the constructor, 
as follows: 

[6] Unfortunately, the person who wrote telling me of the warning's generation also told me that his group had never 
actually understood what the warning's warning was about until he had read the above few paragraphs in a column I 
wrote for the C++ Report. 

// preferred idiom  
X::X( int val )  
   : j( val )  
{  
   i = j;  
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}  

Here is an interesting question: Are the entries in the initialization list entered such that the declaration order 
of the class is preserved? That is, given 

// An interesting question is asked:  
X::X( int val )  
   : j( val )  
{  
   i = j;  
}  

is the initialization of j inserted before or after the explicit user assignment of j to i? If the declaration order 
is preserved, this code fails badly. The code is correct, however, because the initialization list entries are 
placed before explicit user code. 

Another common question is whether you can invoke a member function to initialize a member, such as 

// is the invocation of X::xfoo() ok?  
X::X( int val )  
   : i( xfoo( val )),  
     j( val )  
   {}  

where xfoo() is a member function of X. The answer is yes, but…. To answer the "but" first, I reiterate my 
advice to initialize one member with another inside the constructor body, not in the member initialization list. 
You don't know the dependencies xfoo() has regarding the state of the X object to which it is bound. By 
placing xfoo() within the constructor body, you can ensure there is no ambiguity about which members are 
initialized at the point of its invocation. 

The use of the member function is valid (apart from the issue of whether the members it accesses have been 
initialized). This is because the this pointer associated with the object being constructed is well formed and 
the expansion simply takes a form like the following: 

// Pseudo C++ Code: constructor augmentation  
X::X( /* this pointer, */ int val )  
{  
   i = this->xfoo( val );  
   j = val;  
}  

Finally, then, what about this, in which a derived class member function is invoked to pass an argument to 
the base class constructor: 

// is the invocation of FooBar::fval() ok?  
class FooBar : public X {  
   int _fval;  
public:  
   int fval() { return _fval; }  
   FooBar( int val )  
      : _fval( val ),  
        X( fval() )  
      {}  
   ...  
};  

What do you think? A good idea or not? Here is its probable expansion: 

// Pseudo C++ Code  
FooBar::FooBar( /* this pointer goes here */ )  
{  
   // Oops: definitely not a good idea  
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   X::X( this, this->fval() );  
   _fval = val;  
};  

It's definitely not a good idea. (In later chapters, base and virtual base class initialization within the member 
initialization list is detailed.) 

In summary, the compiler iterates over and possibly reorders the initialization list to reflect the declaration 
order of the members. It inserts the code within the body of the constructor prior to any explicit user code. 

Ru-Brd  

Ru-Brd  

Chapter 3. The Semantics of Data 

Some while back I received e-mail from someone in France who was both mystified and a might upset. He 
had either volunteered or been drafted to provide a persistence library for his project group. In preparation 
for his work, he coded and then printed out the result of applying the sizeof operator to the following 
seemingly trivial class hierarchy: 

class X {};  
class Y : public virtual X {};  
class Z : public virtual X {};  
class A : public Y, public Z {};  

None of these classes contains any explicit data—any anything, in fact, except an inheritance relationship—so 
he apparently believed the size of each class should be 0. It wasn't, of course—not even the apparently 
benign class X: 

sizeof X yielded 1  
sizeof Y yielded 8  
sizeof Z yielded 8  
sizeof A yielded 12  

Let's look at each declaration in turn and see what's going on. An empty class, such as 

// sizeof X == 1  
class X {};  

in practice is never empty. Rather it has an associated size of 1 byte—a char member inserted by the 
compiler. This allows two objects of the class, such as 

X a, b;  
if ( &a == &b ) cerr << "yipes!" << endl;  

to be allocated unique addresses in memory. 

What surprised (and dismayed) my correspondent even more, I suspect, was the result of applying the 
sizeof operator to the empty declaration of both classes Y and Z: 

// sizeof Y == sizeof Z == 8  
class Y : public virtual X{};  
class Z : public virtual X{};  

On his machine, the size of both classes Y and Z is 8. This size, however, is partially machine dependent. It 
also depends in part on the compiler implementation being used. The given size of both class Y and class Z 
on any machine is the interplay of three factors: 

1. Language support overhead. There is an associated overhead incurred in the language support of 
virtual base classes. Within the derived class, this overhead is reflected as some form of pointer, either 
to the virtual base class subobject or to an associated table within which either the address or offset to 
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the virtual base class subobject is stored. On my correspondent's machine, the pointer is 4 bytes. 
(Virtual base classes are discussed in Section 3.4.) 

2. Compiler optimization of recognized special cases. There is the 1 byte size of the virtual base class X 
subobject also present within Y (and Z). Traditionally, this is placed at the end of the "fixed" (that is, 
invariant) portion of the derived class. Some compilers now provide special support for an empty 
virtual base class (the paragraph following item 3 discusses this in more detail). Our correspondent's 
compiler, however, did not provide this special handling. 

3. Alignment constraints. The size of class Y (and Z) at this point is 5 bytes. On most machines, 
aggregate structures have an alignment constraint so that they can be efficiently loaded from and 
stored to memory. On my correspondent's machine, alignment of an aggregate is on a 4-byte 
boundary. So class Y (and Z) requires 3 bytes of padding. The result is a final size of 8. 

The empty virtual base class has become a common idiom of OO design under C++ (it provides a virtual 
interface without defining any data). In response, some recent compilers provide special handling of the 
empty virtual base class (see [SUN94a]). Under this strategy, an empty virtual base class is treated as being 
coincident with the beginning of the derived class object; that is, it takes up no additional space. This saves 
the 1 byte associated with item 2. This savings in turn removes the need for the 3 bytes of padding required 
in item 3. The overhead to support the virtual derivation (item 1), however, remains: The size of both Y and 
Z under this model is 4 bytes, not 8. 

This potential difference between compilers illustrates the evolutionary nature of the C++ Object Model. The 
model provides for the general case. As special cases are recognized over time, this or that heuristic is 
introduced to provide optimal handling. If successful, the heuristic is raised to common practice and becomes 
incorporated across implementations. It becomes thought of as standard, although it is not prescribed by the 
Standard, and over time it is likely be thought of as part of the language. The virtual function table is a good 
example of this. Another is the named return value (NRV) optimization discussed in Chapter 2. 

What, then, would you expect the size of class A to be? Obviously, in part that depends on the compiler being 
used. First, consider the compiler without special handling of the empty virtual base class. If we forget that 
both Y and Z are derived virtually from class X, we might answer 16 for the size of class A. After all, Y and Z 
are both 8 bytes each. However, when we apply the sizeof operator to class A, we discover that it has a size 
of 12 bytes. What is going on? 

A virtual base class subobject occurs only once in the derived class regardless of the number of times it 
occurs within the class inheritance hierarchy. The size of class A is determined by the following: 

The size of the single shared instance of class X: 1 byte 

The size of its base classes Y and Z minus the storage allocated for class X: 4 bytes each (8 bytes 
total) 

The size of class A itself: in this case, 0 bytes 

The alignment requirement of class A, if any. The size without alignment is 9 bytes. Class A must align 
on a 4-byte boundary, thus it requires 3 bytes of padding. This results in a total size of 12 bytes. 

What about under the special handling of the empty virtual base class? As before, the additional 1 byte for 
the empty instance of class X is removed and, with that, the additional 3 bytes of padding. Thus the size of 
Class A under this special handling is 8 bytes. Note that had we ourselves introduced one or more data 
members into the virtual base class X, the two compilers would have generated essentially equivalent object 
layouts. 

The C++ standard does not mandate details such as the ordering of either base class subobjects or of data 
members across access levels. Neither does it mandate the implementation of either virtual functions or 
virtual base classes; rather, it declares them to be implementation dependent. In my discussion both in this 
chapter and in the rest of the book, I will distinguish between what the Standard mandates and what the 
current standard practice is. 

In this chapter, the data members of the class and class hierarchy take center stage. The data members of a 
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class, in general, represent the state of the class at some point in the program execution. Nonstatic data 
members hold the values of individual class objects; static data members hold values of interest to the class 
as a whole. 

The C++ object model representation for nonstatic data members optimizes for space and access time (and 
to preserve compatibility with the C language layout of the C struct) by storing the members directly within 
each class object. This is also true for the inherited nonstatic data members of both virtual and nonvirtual 
base classes, although the ordering of their layout is left undefined. Static data members are maintained 
within the global data segment of the program and do not affect the size of individual class objects. Only one 
instance of a static data member of a class exists within a program regardless of the number of times that 
class is an object of direct or indirect derivation. (The static data members of a template class behave slightly 
differently. See Section 7.1 for a discussion.) 

Each class object, then, is exactly the size necessary to contain the nonstatic data members of its class. This 
size may at times surprise you as being larger than necessary, as it did my correspondent from France. This 
girth comes about in two ways: 

1. Additional data members added by the compilation system to support some language functionality 
(primarily the virtuals) 

2. Alignment requirements on the data members and data structures as a whole 
Ru-Brd  

Ru-Brd  

3.1 The Binding of a Data Member 

Consider the following program fragment:. 

// A third party foo.h header file  
// pulled in from somewhere  
extern float x;  
 
// the programmer's Point3d.h file  
class Point3d  
{  
public:  
   Point3d( float, float, float );  
   // question:  which x is returned and set?  
   float X() const { return x; }  
   void X( float new_x ) const { x = new_x; }  
   // ...  
private:  
   float x, y, z;  
};  

If I were to ask which x the Point3d member X() returns—the class instance or the extern instance—
everyone today would answer the class instance, and everyone would be right. Most everyone, however, 
would probably be surprised to learn that this answer was not always correct. 

In the original implementation of C++, the references to x within the two instances of Point3d::X() 
actually resolved to the global x object! This binding was nearly universally unexpected and led to two styles 
of defensive programming in the early use of C++: 

1. Placing all data members first in the class declaration to ensure the right binding:  

class Point3d  
{  
   // defensive programming style #1  
   // place all data first ...  
   float x, y, z;  
public:  
   float X() const { return x; }  
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   // ... etc. ...  
};  

2. Placing all inline functions, regardless of their size, outside the class declaration: 

class Point3d  
{  
public:  
   // defensive programming style #2  
   // place all inlines outside the class  
   Point3d();  
   float X() const;  
   void X( float ) const;  
   // ... etc. ...  
};  
inline float  
Point3d::  
X() const  
{  
   return x;  
}  
 
// ... etc. ...  

These styles still persist, in fact, although the necessity for their use was explicitly removed from the 
language with Release 2.0 and the accompanying revised C++ Reference Manual. The language rule back 
then was referred to as the "member rewriting rule" and stated generally that the body of an inline function is
not evaluated until after the entire class declaration is seen. The Standard refined the rewriting rule with a 
tuple of member scope resolution rules. The effect is still to evaluate the body of an inline member function 
as if it had been defined immediately following the class declaration. That is, when one writes 

extern int x;  
 
class Point3d  
{  
public:  
   ...  
   // analysis of function body delayed until  
   // closing brace of class declaration seen.  
   float X() const { return x; }  
   ...  
private:  
   float x;  
   ...  
};  
 
// in effect, analysis is done here  

the analysis of the member function's body is delayed until the entire class declaration is seen. Thus the 
binding of a data member within the body of an inline member function does not occur until after the entire 
class declaration is seen. 

This is not true of the argument list of the member function, however. Names within the argument list are 
still resolved in place at the point they are first encountered. Nonintuitive bindings between extern and 
nested type names, therefore, can still occur. In the following code fragment, for example, the type of 
length in both member function signatures resolves to that of the global typedef—that is, to int. When the 
subsequent declaration of the nested typedef of length is encountered, the Standard requires that the 
earlier bindings be flagged as illegal: 

typedef int length;  
 
class Point3d  
{  
public:  
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   // oops: length resolves to global  
   // ok: _val resolves to Point3d::_val  
   mumble( length val ) { _val = val; }  
   length mumble() { return _val; }  
   // ...  
 
private:  
   // length must be seen before its first  
   // reference within the class.  This  
   // declaration makes the prior reference illegal.  
   typedef float length;  
   length _val;  
   // ...  
};  

This aspect of the language still requires the general defensive programming style of always placing nested 
type declarations at the beginning of the class. In our example, placing the nested typedef defining length 
above any of its uses within the class corrects the nonintuitive binding. 
Ru-Brd  

Ru-Brd  

3.2 Data Member Layout 

Given the following set of data members: 

class Point3d {  
public:  
   // ...  
private:  
   float x;  
   static List<Point3d*> *freeList;  
   float y;  
   static const int chunkSize = 250;  
   float z;  
};  

the nonstatic data members are set down in the order of their declaration within each class object (any 
intervening static data members, such as freeList and chunkSize, are ignored). In our example, then, 
each Point3d object consists of three float members in order: x, y, z. The static data members are stored in 
the program's data segment independent of individual class objects. 

The Standard requires within an access section (the private, public, or protected section of a class 
declaration) only that the members be set down such that "later members have higher addresses within a 
class object" (Section 9.2 of the Standard). That is, the members are not required to be set down 
contiguously. What might intervene between the declared members? Alignment constraints on the type of a 
succeeding member may require padding. This is true both of C and C++, and in this case, the member 
layout of the two languages is in current practice the same. 

Additionally, the compiler may synthesize one or more additional internal data members in support of the 
Object Model. The vptr, for example, is one such synthesized data member that all current implementations 
insert within each object of a class containing one or more virtual functions. Where should the vptr be placed 
within the class object? Traditionally, it has been placed after all the explicitly declared members of the class. 
More recently, it has been placed at the beginning of the class object. The Standard, by phrasing the layout 
requirement as it does, allows the compiler the freedom to insert these internally generated members 
anywhere, even between those explicitly declared by the programmer. 

The Standard also allows the compiler the freedom to order the data members within multiple access sections
within a class in whatever order it sees fit. That is, given the following class declaration: 

class Point3d {  
public:  
   // ...  
private:  
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   float x;  
   static List<Point3d*> *freeList;  
private:  
   float y;  
   static const int chunkSize = 250;  
private:  
   float z;  
};  

the size and composition of the resultant class object is the same as our earlier declaration, but the order of 
members is now implementation depen-dent. The implementation is free to place y first, or z, or whatever. 
However, I am not aware currently of any compilation system that does. 

In practice, multiple access sections are concatenated together into one contiguous block in the order of 
declaration. No overhead is incurred by the access section specifier or the number of access levels. For 
example, declaring eight members in one access section or eight separate access sections in practice results 
in the same-sized objects. 

The following template function, given two data members, identifies which occurs first within the class layout. 
If the two members are the first members declared in two different access sections, it identifies which section 
occurs first (if you are not familiar with pointers to class members, see Section 3.6): 

template< class class_type,  
          class data_type1,  
          class data_type2 >  
char*  
access_order(  
   data_type1 class_type::*mem1,  
   data_type2 class_type::*mem2 )  
{  
   assert ( mem1 != mem2 );  
   return  
      mem1 < mem2  
         ? "member 1 occurs first"  
         : "member 2 occurs first";  
}  

This function could then be invoked as follows: 

access_order( &Point3d::z, &Point3d::y );  

where class-type binds to Point3d and data_type1 and data_type2 bind to float. 

 
Ru-Brd  

Ru-Brd  

3.3 Access of a Data Member 

Given the following pair of program statements: 

Point3d origin;  
origin.x = 0.0;  

you may reasonably ask what is the cost of accessing the x data member? The answer depends both on how 
x and the Point3d class are declared. x can be either a static or nonstatic member. Point3d can be an 
independent class or be derived from a single base class. Less likely, but still possible, it can be either 
multiply or virtually derived. The following sections examine each of these possibilities in turn, including the 
first detailed look at virtual base classes. 

Before I begin, however, let me pose a question. If we have the two definitions, origin and pt, 
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Point3d origin, *pt = &origin;  

is the access of the coordinate data members, such as 

origin.x = 0.0;  
pt->x = 0.0;  

ever significantly different when accessed through the object origin and the pointer pt? If your answer is 
yes, describe the characteristics of both the class Point3d and the data member x that result in the 
difference. I revisit this question and provide an answer at the end of this section. 

Static Data Members 

Static data members are literally lifted out of their class, as we saw in Section 1.1 and treated as if each were 
declared as a global variable (but with visibility limited to the scope of the class). Each member's access 
permission and class association is maintained without incurring any space or runtime overhead either in the 
individual class objects or in the static data member itself. 

A single instance of each class static data member is stored within the data segment of the program. Each 
reference to the static member is internally translated to be a direct reference of that single extern instance. 
For example, 

// origin.chunkSize == 250;  
Point3d::chunkSize == 250;  
 
// pt->chunkSize == 250;  
Point3d::chunkSize == 250;  

This is the only case in the language where the access of a member through a pointer and through an object 
are exactly equivalent in terms of the instructions actually executed. This is because the access of a static 
data member through the member selection operators is a syntactic convenience only. The member is not 
within the class object, and therefore the class object is not necessary for the access. 

What if chunkSize were an inherited member of a complex inheritance hierarchy, perhaps the member of a 
virtual base class of a virtual base class, or some other equally complex hierarchy? It doesn't matter. There is 
still only a single instance of the member within the program, and its access is direct. 

What if the access of the static data member is through a function call or some other form of expression? For 
example, if we write 

foobar().chunkSize == 250;  

what happens to the invocation of foobar()? In the pre-Standard language, one didn't know what would 
happen: It was left unspecified in the ARM whether foobar() had to be evaluated. In cfront, for example, it 
was simply discarded. Standard C++ explicitly requires that foobar() be evaluated, although no use is 
made of its result. A probable translation looks as follows: 

// foobar().chunkSize == 250;  
 
// evaluate expression, discarding result  
(void) foobar();  
Point3d::chunkSize == 250;  

Taking the address of a static data member yields an ordinary pointer of its data type, not a pointer to class 
member, since the static member is not contained within a class object. For example, 

&Point3d::chunkSize;  

yields an actual memory address of type 

const int*  
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If two classes each declare a static member freeList, then placing both of them in the program data 
segment is going to result in a name conflict. The compiler resolves this by internally encoding the name of 
each static data member—it's affectionately called name-mangling—to yield a unique program identifier. 
There are as many name-mangling schemes as there are implementations, it seems, each one described in 
more or less rigorous detail with tables, grammars, and so on. The two important aspects of any name-
mangling scheme are that 

1. the algorithm yields unique names, and 

2. those unique names can be easily recast back to the original name in case the compilation system (or 
environment tool) needs to communicate with the user. 

Nonstatic Data Members 

Nonstatic data members are stored directly within each class object and cannot be accessed except through 
an explicit or implicit class object. An implicit class object is present whenever the programmer directly 
accesses a nonstatic data member within a member function. For example, in the following code: 

Point3d  
Point3d::translate( const Point3d &pt ) {  
   x += pt.x;  
   y += pt.y;  
   z += pt.z;  
}  

the seemingly direct access of x, y, and z is actually carried out through an implicit class object represented 
by the this pointer. Internally, the function is augmented as follows: 

  // internal augmentation of member function  
  Point3d  
  Point3d::translate( Point3d *const this, const Point3d &pt ) {  
     this->x += pt.x;  
     this->y += pt.y;  
     this->z += pt.z;  
  }  

Member functions are examined in more detail in Chapter 4. 

Access of a nonstatic data member requires the addition of the beginning address of the class object with the 
offset location of the data member. For example, given 

origin._y = 0.0;  

the address of 

&origin._y;  

is equivalent to the addition of 

&origin + ( &Point3d::_y - 1 );  

(Notice the peculiar "subtract by one" expression applied to the pointer-to-data-member offset value. Offset 
values yielded by the pointer-to-data-member syntax are always bumped up by one. Doing this permits the 
compilation system to distinguish between a pointer to data member that is addressing the first member of a 
class and a pointer to data member that is addressing no member. Pointers to data members are discussed in
more detail in Section 3.6.) 

The offset of each nonstatic data member is known at compile time, even if the member belongs to a base 
class subobject derived through a single or multiple inheritance chain. Access of a nonstatic data member, 
therefore, is equivalent in performance to that of a C struct member or the member of a nonderived class. 
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Virtual inheritance introduces an additional level of indirection in the access of its members through a base 
class subobject. Thus 

Point3d *pt3d;  
pt3d->_x = 0.0;  

performs equivalently if _x is a member of a struct, class, single inheritance hierarchy, or multiple inheritance
hierarchy, but it performs somewhat slower if it is a member of a virtual base class. In the next sections, I 
examine the effect of inheritance on member layout. Before I turn to that, however, recall the question at the 
beginning of this section: When, if ever, is the access of the coordinate data members, such as 

origin.x = 0.0;  
pt->x = 0.0;  

ever significantly different when accessed through the object origin or the pointer pt? The answer is the 
access is significantly different when the Point3d class is a derived class containing a virtual base class within 
its inheritance hierarchy and the member being accessed, such as x, is an inherited member of that virtual 
base class. In this case, we cannot say with any certainty which class type pt addresses (and therefore we 
cannot know at compile time the actual offset location of the member), so the resolution of the access must 
be delayed until runtime through an additional indirection. This is not the case with the object origin. Its 
type is that of a Point3d class, and the offset location of even inherited virtual base class members are fixed 
at compile time. An aggressive compiler can therefore resolve the access of x through origin statically. 

Ru-Brd  

Ru-Brd  

3.4 Inheritance and the Data Member 

Under the C++ inheritance model, a derived class object is represented as the concatenation of its members 
with those of its base class(es). The actual ordering of the derived and base class parts is left unspecified by 
the Standard. In theory, a compiler is free to place either the base or the derived part first in the derived 
class object. In practice, the base class members always appear first, except in the case of a virtual base 
class. (In general, the handling of a virtual base class is an exception to all generalities, even, of course, this 
one.) 

Given this inheritance model, one can ask: What is the difference in providing two abstract data types for the 
representation of two- and three-dimensional points, such as 

// supporting abstract data types  
class Point2d {  
public:  
   // constructor(s)  
   // operations  
   // access functions  
private:  
   float x, y;  
};  
 
class Point3d {  
public:  
   // constructor(s)  
   // operations  
   // access functions  
private:  
   float x, y, z;  
};  

and providing a two- or three-level hierarchy in which each additional dimension is a class derived from the 
lower dimension? In the following subsections, the effects of single inheritance without the support of virtual 
functions, single inheritance with virtual functions, multiple inheritance, and virtual inheritance are examined. 
Figure 3.1(a) pictures the layout of Point2d and Point3d objects. (In the absence of virtual functions, they are 
equivalent to C struct declarations.) 
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Figure 3.1(a). Data Layout: Independent Structs 

 

Inheritance without Polymorphism 

Imagine that the programmer wishes to share an implementation but continue to use type-specific instances 
of either the two- or three-dimensional point. One design strategy is to derive Point3d from our Point2d class, 
with Point 3d inheriting all the operations and maintenance of the x- and y-coordinates. The effect is to 
localize and share data and the operations upon that data among two or more related abstractions. In 
general, concrete inheritance adds no space or access-time overhead to the representation. 

class Point2d {  
public:  
   Point2d( float x = 0.0, float y = 0.0 )  
      : _x( x ), _y( y ) {};  
 
   float x() { return _x; }  
   float y() { return _y; }  
 
   void x( float newX ) { _x = newX; }  
   void y( float newY ) { _y = newY; }  
 
   void operator+=( const Point2d& rhs ) {  
      _x += rhs.x();  
      _y += rhs.y();  
   }  
      // ... more members  
   protected:  
      float _x, _y;  
   };  
 
   // inheritance from concrete class  
   class Point3d : public Point2d {  
   public:  
      Point3d( float x = 0.0, float y = 0.0, float z = 0.0 )  
         : Point2d( x, y ), _z( z ) {};  
 
      float z() { return _z; }  
      void z( float newZ ) { _z = newZ; }  
 
      void operator+=( const Point3d& rhs ) {  
         Point2d::operator+=( rhs );  
         _z += rhs.z();  
      }  
      // ... more members  
   protected:  
      float _z;  
   };  

The benefit of this design strategy is the localization of the code to manage the x- and y-coordinates. In 
addition, the design clearly indicates the tight coupling of the two abstractions. The declaration and use of 
both Point2d and Point3d class objects do not change from when the two classes were independent, so clients
of these abstractions need not be aware of whether the objects are independent class types or related 
through inheritance. Figure 3.1(b) shows the layout of the Point2d and Point3d inheritance layout without the 
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declaration of a virtual interface. 

Figure 3.1(b). Data Layout: Single Inheritance without Virtual Functions 

 

What are the possible pitfalls of transforming two independent classes into a type/subtype relationship 
through inheritance? A naive design might, in fact, double the number of function calls to perform the same 
operations. That is, say the constructor or operator+=() in our example were not made inline (or the 
compiler could not for some reason support the inlining of the member functions). The initialization or 
addition of a Point3d object would be the cost of the partial Point2d and Point3d instances. In general, 
choosing candidate functions for inlining is an important, if unglamorous, aspect of class design. Confirming 
that they are in fact inlined is necessary before final release of the implementation. 

A second possible pitfall in factoring a class into a two-level or deeper hierarchy is a possible bloating of the 
space necessary to represent the abstraction as a class hierarchy. The issue is the language guarantee of the 
integrity of the base class subobject within the derived class. It's slightly subtle. A walk-through of an 
example might best explain it. Let's begin with a concrete class: 

class Concrete {  
public:  
   // ...  
private:  
   int val;  
   char c1;  
   char c2;  
   char c3;  
};  

On a 32-bit machine, the size of each Concrete class object is going to be 8 bytes, broken down as follows: 

1. 4 bytes for val 

2. 1 byte each for c1, c2, and c3 

3. 1 byte for the alignment of the class on a word boundary 

Say, after some analysis, we decide that a more logical representation splits Concrete into a three-level 
inheritance hierarchy as follows: 

class Concrete1 {  
public:  
   // ...  
protected:  
   int val;  
   char bit1;  
};  
class Concrete2 : public Concrete1 {  
public:  
   // ...  
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protected:  
   char bit2;  
};  
 
class Concrete3 : public Concrete2 {  
public:  
   // ...  
protected:  
   char bit3;  
};  

From a design standpoint, this representation may make more sense. From an implementation standpoint, 
however, we may be distressed to find that a Concrete3 class object now has a size of 16 bytes—double its 
previous size. 

What's going on? Recall that the issue is the integrity of the base class subobject within the derived class. 
Let's walk through the layout of the inheritance hierarchy to see what is going on. 

The Concrete1 class contains the two members—val and bit1—that together take up 5 bytes. The size of a 
Concrete1 class object, however, is 8 bytes: the 5 bytes of actual size plus 3 bytes of padding to align the 
object on a machine word boundary. That's as true in C as it is in C++; generally, alignment constraints are 
determined by the underlying processor. 

Nothing necessarily to complain about so far. It's the layout of the derived class that typically drives the 
unwary programmer into fits of either perplexity or angry indignation. Concrete2 adds a single nonstatic data 
member, bit2, of type char. Our unwary programmer expects it to be packed into the base Concrete1 
representation, taking up one of the bytes otherwise wasted as alignment padding. This layout strategy 
makes the Concrete2 class object also of size 8 bytes, with 2 bytes of padding. 

The layout of the Concrete2 class, however, instead preserves the 3 bytes of padding within the Concrete1 
base class subobject. The bit2 member is set down after that, followed by an additional 3 bytes of padding. 
The size of a Concrete2 class object is 12 bytes, not 8, with 6 bytes wasted for padding. The same layout 
algorithm results in a Concrete3 class object's being 16 bytes, 9 of which are wasted on padding. 

"That's stupid," is the unwary programmer's judgment, which more than one has chosen to share with me 
over e-mail, on the phone, and in per-son. Do you see why the language behaves as it does? 

Let's declare the following set of pointers: 

Concrete2 *pc2;  
Concrete1 *pc1_1, *pc2_2;  

Both pc1_1 and pc2_2 can address objects of either three classes. The following assignment 

*pc1_1 = *pc2_2;  

should perform a default memberwise copy of the Concrete1 portion of the object addressed. If pc1_1 
addresses a Concrete2 or Concrete3 object, that should not be of consequence to the assignment of its 
Concrete1 subobject. 

However, if the language were to pack the derived class members Concrete2::bit2 or Concrete3::bit3 
into the Concrete1 subobject, these language semantics could not be preserved. An assignment such as 

pc1_1 = pc2;  
 
// oops: derived class subobject is overridden  
// its bit2 member now has an undefined value  
*pc1_1 = *pc2_2;  

would overwrite the values of the packed inherited members. It would be an enormous effort on the user's 
part to debug this, to say the least. 
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Adding Polymorphism 

If we want to operate on a point independent of whether it is a Point2d or Point3d instance, we need to 
provide a virtual function interface within our hierarchy. Let's see how things change when we do that: 

class Point2d {  
public:  
   Point2d( float x = 0.0, float y = 0.0 )  
      : _x( x ), _y( y ) {};  
 
   // access functions for x & y same as above  
   // invariant across type: not made virtual  
 
   // add placeholders for z — do nothing ...  
   virtual float z(){ return 0.0 };  
   virtual void z( float ) {}  
   // turn type explicit operations virtual  
   virtual void  
   operator+=( const Point2d& rhs ) {  
       _x += rhs.x(); _y += rhs.y(); }  
 
   // ... more members  
protected:  
   float _x, _y;  
};  

It makes sense to introduce a virtual interface into our design only if we intend to manipulate two- and three-
dimensional points polymorphically, that is, to write code such as 

void foo( Point2d &p1, Point2d &p2 ) {  
   // ...  
   p1 += p2;  
   // ...  
}  

where p1 and p2 may be either two- or three-dimensional points. This is not something that any of our 
previous designs supported. This flexibility, of course, is at the heart of OO programming. Support for this 
flexibility, however, does introduce a number of space and access-time overheads for our Point2d class: 

Introduction of a virtual table associated with Point2d to hold the address of each virtual function it 
declares. The size of this table in general is the number of virtual functions declared plus an additional 
one or two slots to support runtime type identification. 

Introduction of the vptr within each class object. The vptr provides the runtime link for an object to 
efficiently find its associated virtual table. 

Augmentation of the constructor to initialize the object's vptr to the virtual table of the class. 
Depending on the aggressiveness of the compiler's optimization, this may mean resetting the vptr 
within the derived and each base class constructor. (This is discussed in more detail in Chapter 5.) 

Augmentation of the destructor to reset the vptr to the associated virtual table of the class. (It is likely 
to have been set to address the virtual table of the derived class within the destructor of the derived 
class. Remember, the order of destructor calls is in reverse: derived class and then base class.) An 
aggressive optimizing compiler can suppress a great many of these assignments. 

The impact of these overheads depends on the number and lifetime of the Point2d objects being manipulated 
and the benefits gained in programming the objects polymorphically. If an application knows its use of point 
objects is limited to either (but not both) two- or three-dimensional points, the overheads of this design may 
become unacceptable. [1] 

[1] I am not aware of any production system actually making use of a polymorphic Point hierarchy.
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Here is our new Point3d derivation: 

class Point3d : public Point2d {  
public:  
   Point3d( float x = 0.0, float y = 0.0, float z = 0.0 )  
      : Point2d( x, y ), _z( z ) {};  
   float z() { return _z; }  
   void z( float newZ ) { _z = newZ; }  
 
   void operator+=( const Point2d& rhs ) {  
      Point2d::operator+=( rhs );  
      _z += rhs.z();  
   }  
   // ... more members  
protected:  
   float _z;  
};  

Although the syntax of the class's declaration has not changed, everything about it is now different: The two 
z() member functions and the operator+=() operator are virtual instances. Each Point3d class object 
contains an additional vptr member object (the instance inherited from Point2d). There is also a Point3d 
virtual table. The invocation of each member function made virtual is also more complex (this is covered in 
Chapter 4). 

One current topic of debate within the C++ compiler community concerns where best to locate the vptr 
within the class object. In the original cfront implementation, it was placed at the end of the class object in 
order to support the following inheritance pattern, shown in Figure 3.2(a): 

Figure 3.2(a). Vptr Placement and End of Class 

 

struct no_virts {  
   int d1, d2;  
};  
class has_virts: public no_virts {  
public:  
   virtual void foo();  
   // ...  
private:  
   int d3;  
};  
 
no_virts *p = new has_virts;  

Placing the vptr at the end of the class object preserves the object layout of the base class C struct, thus 
permitting its use within C code. This inheritance idiom is believed by many to have been more common 
when C++ was first introduced than currently. 

Subsequent to Release 2.0, with its addition of support for multiple inheritance and abstract base classes, and
the general rise in popularity of the OO paradigm, some implementations began placing the vptr at the start 
of the class object. (For example, Martin O'Riordan, who led Microsoft's original C++ compiler effort, 
persuasively argues for this implementation model.) See Figure 3.2(b) for an illustration. 
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Figure 3.2(b). Vptr Placement at Front of Class 

 

Placing the vptr at the start of the class is more efficient in supporting some virtual function invocations 
through pointers to class members under multiple inheritance (see Section 4.4). Otherwise, not only must the
offset to the start of the class be made available at runtime, but also the offset to the location of the vptr of 
that class must be made available. The trade-off, however, is a loss in C language interoperability. How 
significant a loss? What percentage of programs derive a polymorphic class from a C-lan-guage struct? There 
are currently no empirical numbers to support either position. 

Figure 3.3 shows the Point2d and Point3d inheritance layout with the addition of virtual functions. (Note: The 
figure shows the vptr placement at the end of the base class.) 

Figure 3.3. Data Layout: Single Inheritance with Virtual Inheritance 

 

Multiple Inheritance 

Single inheritance provides a form of "natural" polymorphism regarding the conversion between base and 
derived types within the inheritance hierarchy. Look at Figures 3.1(b), 3.2(a), or 3.3, where you can see that 
the base and derived class objects both begin at the same address. They differ in that the derived object 
extends the length of its nonstatic data members. The assignment, such as 

Point3d p3d;  
Point2d *p = &p3d;  

of the derived class object to a pointer or reference to the base class (regardless of the depth of the 
inheritance hierarchy) requires no compiler intervention or modification of the address. Instead, it happens 
"naturally," and in that sense, it provides optimal runtime efficiency. 

From Figure 3.2(b), note that placing the vptr at the beginning of the class object breaks the natural 
polymorphism of single inheritance in the special case of a base class without virtual functions and a derived 
class with them. The conversion of the derived object to the base in this case requires the intervention of the 
compiler in order to adjust the address being assigned by the size of the vptr. Under both multiple and virtual 
inheritances, the need for compiler intervention is considerably more pronounced. 

Multiple inheritance is neither as well behaved nor as easily modeled as single inheritance. The complexity of 
multiple inheritance lies in the "unnatural" relationship of the derived class with its second and subsequent 
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base class subobjects. Consider, for example, the following multiply derived class, Vertex3d: 

class Point2d {  
public:  
   // ...  
protected:  
   float _x, _y;  
};  
 
class Vertex {  
public:  
   // ...  
protected:  
   Vertex *next;  
};  
 
class Vertex2d :  
   public Point2d, public Vertex {  
public:  
   //...  
protected:  
   float mumble;  
};  

The problem of multiple inheritance primarily affects conversions between the derived and second or 
subsequent base class objects, either directly 

extern void mumble( const Vertex& );  
Vertex3d v;  
...  
// conversion of a Vertex3d to Vertex is ``unnatural''  
mumble( v );  

or through support for the virtual function mechanism. The problems with supporting virtual function 
invocation are discussed in Section 4.2. 

The assignment of the address of a multiply derived object to a pointer of its leftmost (that is, first) base 
class is the same as that for single inheritance, since both point to the same beginning address. The cost is 
simply the assignment of that address (Figure 3.4 shows the multiple inheritance layout). The assignment of 
the address of a second or subsequent base class, however, requires that that address be modified by the 
addition (or subtraction in the case of a downcast) of the size of the intervening base class subobject(s). For 
example, with 

Figure 3.4. Data Layout: Multiple Inheritance 
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Vertex3d v3d;  
Vertex  *pv;  
Point2d *pp;  
Point3d *p3d;  

the assignment 

pv = &v3d;  

requires a conversion of the form 

// Pseudo C++ Code  
pv = (Vertex*)(((char*)&v3d) + sizeof( Point3d ));  

whereas the assignments 

pp  = &v3d;  
p3d = &v3d;  

both simply require a copying of the address. With 

Vertex3d *p3d;  
Vertex   *pv;  

the assignment 

pv = p3d;  

cannot simply be converted into 

// Pseudo C++ Code  
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pv = (Vertex*)((char*)p3d) + sizeof( Point3d );  

since, if p3d were set to 0, pv would end up with the value sizeof(Point3d). So, for pointers, the internal 
conversion requires a conditional test: 

// Pseudo C++ Code  
pv = p3d  
   ? (Vertex*)((char*)p3d) + sizeof( Point3d )  
   : 0;  

Conversion of a reference need not defend itself against a possible 0 value, since the reference cannot refer 
to no object. 

The Standard does not require a specific ordering of the Point3d and Vertex base classes of Vertex3d. The 
original cfront implementation always placed them in the order of declaration. A Vertex3d object under cfront,
therefore, consisted of the Point3d subobject (which itself consisted of a Point2d subobject), followed by the 
Vertex subobject and finally by the Vertex3d part. In practice, this is still how all implementations lay out the 
multiple base classes (with the exception of virtual inheritance). 

An optimization under some compilers, however, such as the MetaWare compiler, switch the order of multiple 
base classes if the second (or subsequent) base class declares a virtual function and the first does not. This 
shuffling of the base class order saves the generation of an additional vptr within the derived class object. 
There is no universal agreement among implementations about the importance of this optimization, and use 
of this optimization is not (at least currently) widespread. 

What about access of a data member of a second or subsequent base class? Is there an additional cost? No. 
The member's location is fixed at compile time. Hence its access is a simple offset the same as under single 
inheritance regardless of whether it is a pointer, reference, or object through which the member is being 
accessed. 

Virtual Inheritance 

A semantic side effect of multiple inheritance is the need to support a form of shared subobject inheritance. 
The classic example of this is the original iostream library implementation: 

//pre-standard iostream implementation  
class ios { ... };  
class istream : public ios { ... };  
class ostream : public ios { ... };  
class iostream :  
   public istream, public ostream { ... };  

Both the istream and ostream classes contain an ios subobject. In the layout of iostream, however, we need 
only a single ios subobject. The language level solution is the introduction of virtual inheritance: 

class ios { ... };  
class istream : public virtual ios { ... };  
class ostream : public virtual ios { ... };  
class iostream :  
   public istream, public ostream { ... };  

As complicated as the semantics of virtual inheritance may seem, its support within the compiler has proven 
even more complicated. In our iostream example, the implementational challenge is to find a reasonably 
efficient method of collapsing the two instances of an ios subobject maintained by the istream and ostream 
classes into a single instance maintained by the iostream class, while still preserving the polymorphic 
assignment between pointers (and references) of base and derived class objects. 

The general implementation solution is as follows. A class containing one or more virtual base class 
subobjects, such as istream, is divided into two regions: an invariant region and a shared region. Data within 
the invariant region remains at a fixed offset from the start of the object regardless of subsequent 
derivations. So members within the invariant region can be accessed directly. The shared region represents 
the virtual base class subobjects. The location of data within the shared region fluctuates with each 
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derivation. So members within the shared region need to be accessed indirectly. What has varied among 
implementations is the method of indirect access. The following example illustrates the three predominant 
strategies. Here is the data portion of a virtual Vertex3d inheritance hierarchy: [2] 

[2] This hierarchy is suggested by [POKOR94], an excellent 3D Graphics textbook using C++.

 

class Point2d {  
public:  
   ...  
protected:  
   float _x, _y;  
};  
 
class Vertex : public virtual Point2d {  
public:  
   ...  
protected:  
   Vertex *next;  
};  
 
class Point3d : public virtual Point2d {  
public:  
   ...  
protected:  
   float _z;  
};  
class Vertex3d :  
   public Point3d, public Vertex {  
public:  
   ...  
protected:  
   float mumble;  
};  

The general layout strategy is to first lay down the invariant region of the derived class and then build up the 
shared region. 

However, one problem remains: How is the implementation to gain access to the shared region of the class? 
In the original cfront implementation, a pointer to each virtual base class is inserted within each derived class 
object. Access of the inherited virtual base class members is achieved indirectly through the associated 
pointer. For example, if we have the following Point3d operator: 

void  
Point3d::  
operator+=( const Point3d &rhs )  
{  
   _x += rhs._x;  
   _y += rhs._y;  
   _z += rhs._z;  
};  

under the cfront strategy, this is transformed internally into 

// Pseudo C++ Code  
__vbcPoint2d->_x += rhs.__vbcPoint2d->_x;  
__vbcPoint2d->_y += rhs.__vbcPoint2d->_y;  
_z += rhs._z;  

A conversion between the derived and base class instances, such as 

Vertex *pv = pv3d;  

under the cfront implementation model becomes 
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// Pseudo C++ code  
Vertex *pv = pv3d ? pv3d->__vbcPoint2d : 0;  

There are two primary weaknesses with this implementation model: 

1. An object of the class carries an additional pointer for each virtual base class. Ideally, we want a 
constant overhead for the class object that is independent of the number of virtual base classes within 
its inheritance hierarchy. Think of how you might solve this. 

2. As the virtual inheritance chain lengthens, the level of indirection increases to that depth. This means 
that three levels of virtual derivation requires indirection through three virtual base class pointers. 
Ideally, we want a constant access time regardless of the depth of the virtual derivation. 

MetaWare and other compilers still using cfront's original implementation model solve the second problem by 
promoting (by copying) all nested virtual base class pointers into the derived class object. This solves the 
constant access time problem, although at the expense of duplicating the nested virtual base class pointers. 
MetaWare provides a compile-time switch to allow the programmer to choose whether to generate the 
duplicate pointers. Figure 3.5(a) illustrates the pointer-to-base-class implementation model. 

Figure 3.5(a). Data Layout: Virtual Inheritance with Pointer Strategy 

 

There are two general solutions to the first problem. Microsoft's compiler introduced the virtual base class 
table. Each class object with one or more virtual base classes has a pointer to the virtual base class table 
inserted within it. The actual virtual base class pointers, of course, are placed within the table. Although this 
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solution has been around for many years, I am not aware of any other compiler implementation that employs 
it. (It may be that Microsoft's patenting of their virtual function implementation effectively prohibits its use.) 

The second solution, and the one preferred by Bjarne (at least while I was working on the Foundation project 
with him), is to place not the address but the offset of the virtual base class within the virtual function table. 
(Figure 3.5(b) on page 100 shows the base class offset implementation model.) I implemented this in the 
Foundation research project, interweaving the virtual base class and virtual function entries. In the recent 
Sun compiler, the virtual function table is indexed by both positive and negative indices. The positive indices, 
as previously, index into the set of virtual functions; the negative indices retrieve the virtual base class 
offsets. Under this strategy, the Point3d operator is translated into the following general form (leaving off 
casts for readability and not showing the more efficient precalculation of the addresses): 

Figure 3.5(b). Data Layout: Virtual Inheritance with Virtual Table Offset Strategy 

 

// Pseudo C++ Code  
(this + __vptr__Point3d[-1])->_x +=  
   (&rhs + rhs.__vptr__Point3d[-1])->_x;  
(this + __vptr__Point3d[-1])->_y +=  
   (&rhs + rhs.__vptr__Point3d[-1])->_y;  
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_z += rhs._z;  

Although the actual access of the inherited member is more expensive under this strategy, the cost of that 
access is localized to a use of the member. A conversion between the derived and base class instances, such 
as 

Vertex *pv = pv3d;  

under this implementation model becomes 

// Pseudo C++ code  
Vertex *pv = pv3d  
   ? pv3d + pv3d->__vptr__Point3d[-1])  
   : 0;  

Each of these are implementation models; they are not required by the Standard. Each solves the problem of 
providing access to a shared subobject whose location is likely to fluctuate with each derivation. Because of 
the overhead and complexity of virtual base class support, each implementation is somewhat different and 
likely to continue to evolve over time. 

Access of an inherited virtual base class member through a nonpolymorphic class object, such as 

Point3d origin;  
...  
origin._x;  

can be optimized by an implementation into a direct member access, much as a virtual function call through 
an object can be resolved at compile time. The object's type cannot change between one program access and 
the next, so the problem of the fluctuating virtual base class subobject in this case does not hold. 

In general, the most efficient use of a virtual base class is that of an abstract virtual base class with no 
associated data members. 
Ru-Brd  

Ru-Brd  

3.5 Object Member Efficiency 

The following sequence of tests attempts to measure the overhead associated with using aggregation, 
encapsulation, and inheritance. The case against which all the tests are measured is the access cost of 
assigning, adding, and subtracting individual local variables: 

float pA_x = 1.725, pA_y = 0.875, pA_z = 0.478;  
float pB_x = 0.315, pB_y = 0.317, pB_z = 0.838;  

The actual expression loop, iterated over 10 million times, looks as follows (of course, the syntax changes as 
the point representation changes): 

for ( int iters = 0; iters < 10000000; iters++ )  
{  
   pB_x = pA_x - pB_z;  
   pB_y = pA_y + pB_x;  
   pB_z = pA_z + pB_y;  
}  

The first test against the use of individual variables is that of a local array of three float elements: 

enum fussy { x, y, z };  
 
for ( int iters = 0; iters < 10000000; iters++ )  
{  
   pB[ x ] = pA[ x ] - pB[ z ];  

Page 75 of 182

22/08/2003file://C:\Documents%20and%20Settings\Mark\Local%20Setting...



   pB[ y ] = pA[ y ] + pB[ x ];  
   pB[ z ] = pA[ z ] + pB[ y ];  
}  

The second test converted the homogeneous array elements into a Cstruct data abstraction with named float 
members x, y, and z: 

for ( int iters = 0; iters < 10000000; iters++ )  
{  
   pB.x = pA.x - pB.z;  
   pB.y = pA.y + pB.x;  
   pB.z = pA.z + pB.y;  
}  

The next rung of the abstraction ladder is the introduction of data encapsulation and the use of inline access 
functions. The point representation becomes an independent Point3d class. I tried two forms of access 
functions. First, I defined an inline instance that returns a reference, allowing it to appear on both sides of the
assignment operator: 

class Point3d {  
public:  
   Point3d( float xx = 0.0, float yy = 0.0, float zz = 0.0 )  
        : _x( xx ), _y( yy ), _z( zz ) {}  
 
   float& x() { return _x; }  
   float& y() { return _y; }  
   float& z() { return _z; }  
 
private:  
   float _x, _y, _z;  
};  

The actual access of each coordinate element then looked as follows: 

for ( int iters = 0; iters < 10000000; iters++ )  
{  
   pB.x() = pA.x() - pB.z();  
   pB.y() = pA.y() + pB.x();  
   pB.z() = pA.z() + pB.y();  
}  

The second form of access function I defined provided a pair of get and set functions: 

float x() { return _x; }  
void x( float newX )  
   { _x = newX; }  

The assignment of each coordinate value took the form 

pB.x( pA.x() - pB.z() );  

Table 3.1 lists the results of running the tests for both compilers. (I break out the times for the two compilers 
only when their performances differ from each other's significantly.) 

Table 3.1. Data Access under Increasing Abstraction 

                  Optimized       Non-optimized  
Individual Local  
   Variables         0.80              1.42  
  
Local Array  
   CC                0.80              2.55  
   NCC               0.80              1.42  
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In terms of actual program performance, the important point here is that with optimization turned on, no 
runtime performance cost for encapsulation and the use of inline access functions was exhibited. 

I was curious why the array access under CC is nearly twice as slow as that for NCC, particularly as the array 
access involves access only of the C language array and not of any "complex" C++ feature. A code 
generation expert dismissed the anomaly as a "quirk of code generation . . . unique to a particular compiler." 
True enough, perhaps, but it happens to be the compiler I currently use to develop software. Call me Curious 
George, if you will. If you're not interested, please skip the next few paragraphs. 

In the following assembler output, l.s means load a single-precision floating-point value; s.s means store a 
single-precision floating-point value; and sub.s means subtract two single-precision floating-point values. In 
the following assembler output for the two compilers, both sequences load the two values, subtract one from 
the other, and store the result. In the less efficient CC output, the address of each local variable is computed 
and placed within a register (the addu means add unsigned): 

// CC assembler output  
#  13  pB[ x ] = pA[ x ] - pB[ z ];  
   addu  $25, $sp, 20  
   l.s   $f4, 0($25)  
   addu  $24, $sp, 8  
   l.s   $f6, 8($24)  
   sub.s $f8, $f4, $f6  
   s.s   $f8, 0($24)  

while in the NCC sequence, the load step computes the address directly: 

// NCC assembler output  
#  13  pB[ x ] = pA[ x ] - pB[ z ];  
   l.s   $f4, 20($sp)  
   l.s   $f6, 16($sp)  
   sub.s $f8, $f4, $f6  
   s.s   $f8, 8($sp)  

If the local variables had been accessed multiple times, the CC strategy would probably be more efficient. For 
a single access, however, the otherwise reasonable strategy of placing the variable's address within a register 
significantly adds to the cost of the expression. In any case, with the optimizer turned on, both code 
sequences are transformed into the same set of statements in which all operations within the loop are 
performed on values placed within registers. 

An obvious observation is that without the optimizer turned on, it is extremely difficult to guess at the 
performance characteristics of a program, since the code is potentially hostage to the "quirk(s) of code 
generation…unique to a particular compiler." Before one begins source level "optimizations" to speed up a 
program, one should always do actual performance measurements rather than relying on speculation and 
common sense. 

In the next sequence of tests, I introduced first a three-level single inheritance representation of the Point 
abstraction and then a virtual inheritance representation of the Point abstraction. I tested both direct and 
inline access (multiple inheritance did not fit naturally into the model, so I decided to forego it.) The general 
hierarchy is 

  
Struct with  
    Public Members   0.80              1.42  
  
Class with Inline  
    Get Method  
   CC                0.80              2.56  
   NCC               0.80              3.10  
  
Class with Inline  
    Get & Set Method  
   CC                0.80              1.74  
   NCC               0.80              2.87 
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class Point1d {...};                      // maintains x  
class Point2d : public Point1d {...};     // maintains y  
class Point3d : public Point2d {...};     // maintains z  

The one-level virtual inheritance derived Point2d virtually from Point1d. The two-level virtual inheritance 
additionally derived Point3d virtually from Point2d. Table 3.2 lists the results of running the tests for both 
compilers. (Again, I break out the times for the two compilers only when their performances differ 
significantly from each other's.) 

Single inheritance should not affect the test performance, since the members are stored contiguously within 
the derived class object and their offsets are known at compile time. The results, as expected, were exactly 
the same as those of the independent abstract data type. (The same should be true under multiple 
inheritance, but I didn't confirm that.) 

Again, it is worth noting that with the optimizer off, performance, which common sense says should be the 
same (direct member access versus inline access), is in practice slower in the case of inline functions. The 
lesson again is that the programmer concerned with efficiency must actually measure the performance of his 
or her program and not leave the measurement of the program to speculation and assumption. It is also 
worth noting that optimizers don't always work. I've more than once had compilations fail with an optimizer 
turned on that compiled fine "normally." 

The virtual inheritance performance is disappointing in that neither compiler recognized that the access of the 
inherited data member pt1d::_x is through a nonpolymorphic class object and that therefore indirect 
runtime access is unnecessary. Both compilers generate indirect access of pt1d::_x (and pt1d::y in the 
case of two levels of virtual inheritance), even though its location within the two Point3d objects is fixed at 
compile time. The indirection significantly inhibited the optimizer's ability to move all the operations within 
registers. The indirection did not affect the non-optimized executables significantly. 

Table 3.2. Data Access under Inheritance Models 

                  Optimized       Non-optimized 
Single Inheritance  
     Direct Access   0.80              1.42  
    Inline Methods  
   CC                0.80              2.55  
   NCC               0.80              3.10  
  
Virtual Inheritance — 1-Level  
     Direct Access   1.60              1.94  
    Inline Methods  
   CC                1.60              2.75  
   NCC               1.60              3.30  
  
Virtual Inheritance — 2-Level  
     Direct Access  
   CC                2.25              2.74  
   NCC               3.04              3.68  
  
    Inline Methods  
   CC                2.25              3.22  
   NCC               2.50              3.81 

Ru-Brd  

Ru-Brd  

3.6 Pointer to Data Members 

Pointers to data members are a somewhat arcane but useful feature of the language, particularly if you need 
to probe at the underlying member layout of a class. One example of such a probing might be to determine if 
the vptr is placed at the beginning or end of the class. A second use, presented in Section 3.2, might be to 
determine the ordering of access sections within the class. As I said, it's an arcane, although potentially 
useful, language feature. 

Consider the following Point3d class declaration. It declares a virtual function, a static data member, and 
three coordinate values: 
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class Point3d {  
public:  
   virtual ~Point3d();  
   // ...  
protected:  
   static Point3d origin;  
   float x, y, z;  
};  

The member layout for each Point3d class object contains the three coordinate values in the order x, y, z and
a vptr. (Recall that origin, the static data member, is hoisted outside the individual class object.) The only 
implementation aspect of the layout is the placement of the vptr. The Standard permits the vptr to be placed 
anywhere within the object: at the beginning, at the end, or in between either of the three members. In 
practice, all implementations place it either at the beginning or at the end. 

What does it mean, then, to take the address of one of the coordinate members? For example, what value 
should the following yield? 

& 3d_point::z;  

It is going to yield the z-coordinate's offset within the class object. Minimally, this has to be the size of the x 
and y members, since the language requires the members within an access level be set down in the order of 
declaration. 

At the compiler's discretion, however, the vptr may be placed either before, in-between, or after the 
coordinate members. Again, in practice, the vptr is either placed at the beginning or at the end of the class 
object. On a 32-bit machine, floats are 4 bytes each, so we would expect the value to be either 8 bytes 
without an intervening vptr or 12 bytes with it. (The vptr, and pointers in general, use 4 bytes on a 32-bit 
architecture.) 

That expectation, however, is off by one—a somewhat traditional error for both C and C++ programmers. 

The physical offset of the three coordinate members within the class layout are, respectively, either 0, 4, and 
8 if the vptr is placed at the end or 4, 8, and 12 if the vptr is placed at the start of the class. The value 
returned from taking the member's address, however, is always bumped up by 1. Thus the actual values are 
1, 5, and 9, and so on. Do you see why Bjarne decided to do that? 

The problem is distinguishing between a pointer to no data member and a pointer to the first data member. 
Consider for example: 

float Point3d::*p1 = 0;  
float Point3d::*p2 = &Point3d::x;  
 
// oops: how to distinguish?  
if ( p1 == p2 ) {  
   cout << " p1 & p2 contain the same value — ";  
   cout << " they must address the same member!" << endl;  
}  

To distinguish between p1 and p2, each actual member offset value is bumped up by 1. Hence, both the 
compiler (and the user) must remember to subtract 1 before actually using the value to address a member. 

Given what we now know about pointers to data members, we find that explaining the difference between 

& 3d_point::z;  

and 

& origin.z  

is straightforward. Whereas taking the address of a nonstatic data member yields its offset within the class, 
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taking the address of a data member bound to an actual class object yields the member's actual address in 
memory. The result of 

& origin.z  

adds the offset of z (minus 1) to the beginning address of origin. The value returned is of type 

float*  

not 

float Point3d::*  

because it refers to an specific single instance, much the same as taking the address of a static data member.

Under multiple inheritance, the combination of a second (or subsequent) base class pointer to a member 
bound to a derived class object is complicated by the offset that needs to be added. For example, if we have 

struct Base1 { int val1; };  
struct Base2 { int val2; };  
struct Derived : Base1, Base2 { ... };  
 
void func1( int d::*dmp, d *pd )  
{  
   // expects a derived pointer to member  
   // what if we pass it a base pointer?  
   pd->*dmp;  
}  
void func2( d *pd )  
{  
   // assigns bmp 1  
   int b2::*bmp = &b2::val2;  
 
   // oops: bmp == 1,  
   // but in Derived, val2 == 5  
   func1( bmp, pd )  
}  

bmp must be adjusted by the size of the intervening Base1 class when passed as the first argument to func1
(). Otherwise, the invocation of 

pd->*dmp;  

within func1() will access Base1::val1, not Base2::val2 as the programmer intended. The specific 
solution in this case is 

// internal transformation by compiler  
func1( bmp + sizeof( Base1 ), pd );  

In general, however, we cannot guarantee that bmp is not 0 and so must guard against it: 

// internal transformation  
// guarding against bmp == 0  
func1( bmp ? bmp + sizeof( Base1 ) : 0, pd );  

Efficiency of Pointers to Members 

The following sequence of tests attempts to gain some measure of the overhead associated with using 
pointers to members under the various class representations of the 3D point. In the first two cases, there is 
no inheritance. The first case takes the address of a bound member: 

Page 80 of 182

22/08/2003file://C:\Documents%20and%20Settings\Mark\Local%20Setting...



float *ax = &pA.x;  

for the three coordinate members of points pA and pB. The assignment, addition, and subtraction look as 
follows: 

*bx = *ax - *bz;  
*by = *ay + *bx;  
*bz = *az + *by;  

The second case takes the address of a pointer to data member: 

float pt3d::*ax = &pt3d::x;  

for the three coordinate members. The assignment, addition, and subtraction use the pointer to data member 
syntax, binding the values to the objects pA and pB: 

pB.*bx = pA.*ax - pB.*bz;  
pB.*by = pA.*ay + pB.*bx;  
pB.*bz = pA.*az + pB.*by;  

Recall that the direct data member exercise of this function, executed in Section 3.5, ran with an average 
user time of 0.80 with optimization turned on and 1.42 with optimization turned off for both compilers. The 
results of running these two tests, coupled with the results of the direct data access, are shown in Table 3.3: 

The non-optimized results conform to expectations. That is, the addition of one indirection per member 
access through the bound pointer more than doubles the execution time. The pointer-to-member access 
again nearly doubles the execution time. The binding of the pointer to data member to the class object 
requires the addition of the offset minus 1 to the address of the object. More important, of course, the 
optimizer is able to bring the performance of all three access strategies into conformance, except the 
anomalous behavior of the NCC optimizer. (It is interesting to note here that the appalling performance of the
NCC executable under optimization reflects a poor optimization of the generated assembly code and not an 
attribute of the source-level C++ code. An examination of the generated non-optimized assembly for both CC 
and NCC showed the two outputs to be identical.) 

The next set of tests looks at the impact of inheritance on the performance of pointers to data members. In 
the first case, the independent Point class is redesigned into a three-level single inheritance hierarchy with 
one coordinate value as a member of each class: 

class Point { ... }; // float x;  
class Point2d : public Point   { ... }; // float y;  
class Point3d : public Point2d { ... }; // float z;  

The next representation retains the three-level single inheritance hierarchy but introduces one level of virtual 
inheritance: the Point2d class is virtually derived from Point. As a result, each access of Point::x is now 
accessing a virtual base class data member. Then, more out of curiosity than need, the final representation 
added a second level of virtual inheritance, that of Point3d being virtually derived from Point2d. Table 3.4 
shows the results. (Note: The poor performance of the NCC optimizer was consistent across the tests, so I've 
left it off the listing.) 

Table 3.3. Nonstatic Data Member Access 

                  Optimized       Non-optimized  
 
Direct Access        0.80              1.42  
Pointer to  
   Bound Member      0.80              3.04  
  
Pointer to  
   Data Member  
      CC             0.80              5.34  
      NCC            4.04              5.34 
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Because inherited data members are stored directly within the class object, the introduction of inheritance 
does not affect the performance of the code at all. The major impact of introducing virtual inheritance is to 
impede the effectiveness of the optimizer. Why? In these two implementations, each level of virtual 
inheritance introduces an additional level of indirection. Under both implementations, each access of 
Point::x, such as 

pB.*bx  

is translated into 

&pB->__vbcPoint + ( bx - 1 )  

rather than the more direct 

&pB + ( bx - 1 )  

The additional indirection reduced the ability of the optimizer to move all the processing into registers. 

Table 3.4. Pointer to Data Member Access 

                  Optimized   %   Non-optimized 
  
No Inheritance       0.80              5.34  
SI (3 levels)        0.80              5.34  
VI (1 level)         1.60              5.44  
VI (2 level)         2.14              5.51  
  
SI:  Single Inheritance       VI:  Virtual Inheritance 

Ru-Brd  

Ru-Brd  

Chapter 4. The Semantics of Function 

If we have a Point3d pointer and object: 

Point3d obj;  
Point3d *ptr = &obj;  

the question is, what actually happens when we write 

obj.normalize();  
ptr->normalize();  

where Point3d::normalize() is implemented as 

Point3d  
Point3d::normalize() const  
{  
   register float mag = magnitude();  
   Point3d normal;  
 
   normal._x = _x/mag;  
   normal._y = _y/mag;  
   normal._z = _z/mag;  
 
   return normal;  
}  

and Point3d::magnitude() is implemented as 

float  
Point3d::magnitude() const  
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{  
   return sqrt(  
         _x * _x + _y * _y + _z * _z  
   );  
}  

The answer is, we don't yet know. C++ supports three flavors of member functions: static, nonstatic, and 
virtual. Each is invoked differently; those differences are the topic of the next section. (A short quiz: Although
we cannot say with certainty whether normalize() and magnitude() are virtual or nonvirtual members, 
we can safely discount the functions as being static, since both (a) directly access the nonstatic coordinate 
data and (b) are declared to be const members. Static member functions may not do either.) 
Ru-Brd  

Ru-Brd  

4.1 Varieties of Member Invocation 

Historically, the original C with Classes supported only nonstatic member functions (see [STROUP82] for the 
first public description of the language). Virtual functions were added in the mid-1980s, and apparently to 
much skepticism (some of which still persists within the C community). In [STROUP94], Bjarne writes: 

A common opinion was that virtual functions were simply a kind of crippled pointer to function 
and thus redundant…. Therefore, the argument went, virtual functions were simply a form of 
inefficiency. 

Static member functions were the last to be introduced. They were formally proposed for the language at the 
Implementor's Workshop of the 1987 Usenix C++ Conference and introduced with cfront, Release 2.0. 

Nonstatic Member Functions 

One C++ design criterion is that a nonstatic member function at a minimum must be as efficient as its 
analogous nonmember function. That is, if we are given a choice between 

float magnitude3d( const Point3d *_this ){ ... }  
float Point3d::magnitude() const { ... }  

there should be no additional overhead for choosing the member function instance. This is achieved by 
internally transforming the member instance into the equivalent nonmember instance. 

For example, here is a nonmember implementation of magnitude(): 

float magnitude3d( const Point3d *_this ){  
   return sqrt( _this->_x * _this->_x +  
               _this->_y * _this->_y +  
               _this->_z * _this->_z );  
}  

By visual inspection, we can see that the nonmember instance seems less efficient. It accesses the coordinate
members indirectly through its argument, while the member instance accesses the coordinate members 
directly. In practice, however, the member function is transformed internally to be equivalent to the 
nonmember instance. Following are the steps in the transformation of a member function: 

1. Rewrite the signature to insert an additional argument to the member function that provides access to 
the invoking class object. This is called the implicit this pointer:  

// non-const nonstatic member augmentation  
Point3d  
Point3d::magnitude( Point3d *const this )  

If the member function is const, the signature becomes  

// const nonstatic member augmentation  
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Point3d  
Point3d::magnitude( const Point3d *const this )  

2. Rewrite each direct access of a nonstatic data member of the class to access the member through the 
this pointer:  

{  
   return sqrt(  
     this->_x * this->_x +  
     this->_y * this->_y +  
     this->_z * this->_z );  
}  

3. Rewrite the member function into an external function, mangling its name so that it's lexically unique 
within the program:  

extern magnitude__7Point3dFv(  
   register Point3d *const this );  

Now that the function has been transformed, each of its invocations must also be transformed. Hence 

obj.magnitude();  

becomes 

magnitude__7Point3dFv( &obj );  

and 

ptr->magnitude();  

becomes 

magnitude__7Point3dFv( ptr );  

The normalize() function is internally transformed into something like the following. This presumes a 
Point3d copy constructor is declared and the named returned value (NRV) optimization is applied (see Section
2.3 for a discussion of the NRV optimization). 

// Representing internal transformation  
// with application of named return value  
// Pseudo C++ Code  
 
void  
normalize__7Point3dFv( register const Point3d *const this,  
                       Point3d &__result )  
{  
   register float mag = this->magnitude();  
 
   // default constructor  
   __result.Point3d::Point3d();  
 
   __result._x = this->_x/mag;  
   __result._y = this->_y/mag;  
   __result._z = this->_z/mag;  
 
   return;  
}  

A slightly more efficient implementation is to directly construct the normal, as follows: 

Page 84 of 182

22/08/2003file://C:\Documents%20and%20Settings\Mark\Local%20Setting...



// slightly more efficient user implementation  
Point3d  
Point3d::normalize() const  
{  
   register float mag = magnitude();  
   return Point3d( _x/mag, _y/mag, _x/mag );  
}  

This instance is transformed into something like the following (again presuming a Point3d copy constructor is 
declared and the NRV optimization is applied): 

// Representing internal transformation  
// Pseudo C++ Code  
void  
normalize__7Point3dFv( register const Point3d *const this,  
                       Point3d &__result )  
{  
   register float mag = this->magnitude();  
 
   // __result substituted for return value  
   __result.Point3d::Point3d(  
      this->_x/mag, this->_y/mag, this->_z/mag );  
 
   return;  
}  

This saves the overhead of the default constructor initialization that is then overwritten. 

Name Mangling 

In general, member names are made unique by concatenating the name of the member with that of the 
class. For example, given the declaration 

class Bar { public: int ival; ... };  

ival becomes something like 

// a possible member name-mangling  
ival__3Bar  

Why does the compiler do that? Consider this derivation: 

class Foo : public Bar { public: int ival; ... };  

Remember that the internal representation of a Foo object is the concatenation of its base and derived class 
members: 

// Pseudo C++ Code  
// internal representation of Foo  
class Foo { public:  
   int ival__3Bar;  
   int ival__3Foo;  
   ...  
};  

Unambiguous access of either ival member is achieved through name mangling. Member functions, because 
they can be overloaded, require a more extensive mangling to provide each with a unique name. 
Transforming 

class Point { public:  
   void  x( float newX );  
   float x();  
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   ...  
};  

into 

class Point { public:  
   void  x__5Point( float newX );  
   float x__5Point();  
   ...  
};  

ends up generating the same name for the two overloaded instances. What makes these instances unique are
their argument lists (referred to as the function signature). Function names are made unique by internally 
encoding the signature types and concatenating those to the name (use of the extern "C" declaration 
suppresses mangling of nonmember functions). This yields a more workable transformation of our pair of x() 
member functions: 

class Point { public:  
   void  x__5PointFf( float newX );  
   float x__5PointFv();  
   ...  
};  

Having shown you a specific encoding scheme (that used within cfront), I now have to confess that there is 
currently no conformity of encoding schemes across compilers, although there is a periodic rise and fall of 
activity to arrive at an industry standard. However, although the details differ across implementations, name 
mangling itself i||s a necessary part of every C++ compiler. 

By encoding the argument list with the function name, the compiler achieves a limited form of type checking 
across separately compiled modules. For example, if a print function was defined as 

void print( const Point3d& ){ ... }  

but was accidentally declared and invoked as 

// oops: suppose to be const Point3d&  
void print( const Point3d );  

the unique name mangling of the two instances would cause any invocation of the incorrect instance to fail to 
be resolved at link time—sometimes optimistically referred to as type-safe linkage. I say "optimistically" 
because the process catches function signature errors only; a misdeclared return type still goes unnoticed. 

In current compilation systems, "demangling" tools intercept and convert these names; the user remains 
blissfully unaware of the actual internal names. However, life was not always so accommodating for the user. 
With Release 1.1, our system was considerably less sophisticated. cfront always tucked away both names, 
and its error messages referenced the source level function name. Not so the linker, however; it echoed the 
internally mangled names handed to it. 

I still remember the anguished and half-furious red-haired and freckled developer who late one afternoon 
staggered into my office demanding to know what cfront had done to his program. I was somewhat new to 
this kind of user interaction, so my first thought was to answer, "Nothing, of course. Well, nothing, that is, 
that isn't for your own good. Well, anyway, I don't know. Why don't you go ask Bjarne?" My second thought 
was to quietly ask him what the problem was. (Thus is a reputation made. :-) ) 

"This," he nearly shouted, shoving a print-out of the compilation into my hand. An abomination, he implied: 
The link editor had reported an unresolved function: 

_oppl_mat44rcmat44  

or some such admittedly less-than-user-friendly mangling of a 4-x-4 matrix class addition operator: 
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mat44::operator+( const mat44& );  

The programmer had declared and invoked this operator but had forgotten to define it. "Oh," he said. 
"Hmmm," he added. He then strongly suggested that in the future we not display the internal name to the 
user. Generally speaking, we've followed his advice. 

Virtual Member Functions 

If normalize() were a virtual member function, the call 

ptr->normalize();  

would be internally transformed into 

( * ptr->vptr[ 1 ])( ptr );  

where the following holds: 

vptr represents the internally generated virtual table pointer inserted within each object whose class 
declares or inherits one or more virtual functions. (In practice, its name is mangled. There may be 
multiple vptrs within a complex class derivation.) 

1 is the index into the virtual table slot associated with normalize(). 

ptr in its second occurrence represents the this pointer. 

Similarly, if magnitude()were a virtual function, its invocation within normalize() would be transformed 
as follows: 

// register float mag = magnitude();  
register float mag = ( *this->vptr[ 2 ] )( this );  

In this case, because Point3d::magnitude() is being invoked within Point3d::normalize() (which has 
already been resolved through the virtual mechanism), explicitly invoking the Point3d instance (and thereby 
suppressing the unnecessary reinvocation through the virtual mechanism) is more efficient: 

// explicit invocation suppresses virtual mechanism  
register float mag = Point3d::magnitude();  

This is significantly more efficient if magnitude() is declared inline. The explicit invocation of a virtual 
function using the class scope operator is resolved in the same way as a nonstatic member function: 

register float mag = magnitude__7Point3dFv( this );  

Although it is semantically correct, it is unnecessary, given the call 

// Point3d obj;  
obj.normalize();  

for the compiler to transform it internally into 

// unnecessary internal transformation!  
( * obj.vptr[ 1 ])( &obj );  

Recall that objects do not support polymorphism (see Section 1.3). So the instance invoked through obj can 
only be the Point3d instance of normalize(). The invocation of a virtual function through a class object 
should always be resolved by your compiler as an ordinary nonstatic member function: 

normalize__7Point3dFv( &obj );  
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An additional benefit of this optimization is that an inline instance of the virtual function can then be 
expanded, thus providing significant performance benefit. 

Virtual functions, particularly their behavior under inheritance, are discussed in more detail in Section 4.2. 

Static Member Functions 

If Point3d::normalize() were a static member function, both its invocations 

obj.normalize();  
ptr->normalize();  

would be internally transformed into "ordinary" nonmember function calls such as 

// obj.normalize();  
normalize__7Point3dSFv();  
// ptr->normalize();  
normalize__7Point3dSFv();  

Prior to the introduction of static member functions, it was not uncommon to see the following admittedly 
bizarre idiom in the code of advanced users: [1] 

[1] Jonathan Shopiro, formerly of Bell Laboratories, was the first person I'm aware of to use this idiom and was the 
primary advocate of the introduction of static member functions into the language. The first formal presentation of 
static member functions occurred during a floundering talk I was giving at the Usenix C++ Conference 
Implementor's Workshop in 1988 on pointer-to-member functions. I had, perhaps not surprisingly, failed to convince 
Tom Cargill that multiple inheritance was not too complicated and somehow introduced Jonathan and his idea of 
static member functions. He thankfully leaped onto the podium and lectured us on his idea while I caught my wind. 
(In [STROUP94], Bjarne mentions first hearing a proposal for static member functions from Martion O'Riordan.) 

(( Point3d* ) 0 )->object_count();  

where object_count() does nothing more than return the _object _count static data member. How did 
this idiom evolve? 

Before the introduction of static member functions, the language required all member functions to be invoked 
through an object of that class. In practice, the class object is necessary only when one or more nonstatic 
data members are directly accessed within the member function. The class object provides the this pointer 
value for the call. The this pointer binds the nonstatic class members accessed within the member function to
the members contained within the object. If no member is directly accessed, there is, in effect, no need of 
the this pointer. There then is no need to invoke the member function with a class object. The language at 
the time, however, did not recognize this case. 

This created an anomaly in terms of accessing static data members. If the designer of the class declared the 
static data member nonpublic, as is taught to be good style, then the designer would also have to provide 
one or more member functions for read and write access of the member. Thus, although one could access a 
static data member independent of a class object, invocation of its access member function(s) required that 
those functions be bound to an object of the class. 

Access independent of a class object is particularly important when, as in the case of object_count(), the 
class designer wants to support the condition of there being no class objects. The programming solution is 
the peculiar idiom of casting 0 to a class pointer, thereby providing the unnecessary but required this pointer 
instance: 

// internal transformation of call  
object_count(( Point3d* ) 0 );  

The language solution was the introduction of static member functions within the official cfront Release 2.0. 
The primary characteristic of a static member function is that it is without a this pointer. The following 
secondary characteristics all derive from that primary one: 

It cannot directly access the nonstatic members of its class. 
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It cannot be declared const, volatile, or virtual. 

It does not need to be invoked through an object of its class, although for convenience, it may. 

The use of the member selection syntax is a notational convenience; it is transformed internally into a direct 
invocation: 

if ( Point3d::object_count() > 1 ) ...  

What if the class object is obtained as a side effect of some expression, such as a function call: 

if ( foo().object_count() > 1 ) ...  

The expression still needs to be evaluated: 

// transformation to preserve side-effects  
(void) foo();  
if ( Point3d::object_count() > 1 ) ...  

A static member function, of course, is also lifted out of the class declaration and given a suitably mangled 
name. For example, 

unsigned int  
Point3d::  
object_count()  
{  
   return _object_count;  
}  

under cfront is transformed internally into 

// internal transformaton under cfront  
unsigned int  
object_count__5Point3dSFv()  
{  
   return _object_count__5Point3d;  
}  

where SFv indicates it is a static member function with an empty (void) argument list. 

Taking the address of a static member function always yields the value of its location in memory, that is, its 
address. Because the static member function is without a this pointer, the type of its address value is not a 
pointer to class member function but the type of a nonmember pointer to function. That is, 

&Point3d::object_count();  

yields a value of type 

unsigned int (*)();  

not of type 

unsigned int ( Point3d::* )();  

Static member functions, by being this-less and therefore of the same type as an equivalent nonmember 
function, also provide an unexpected solution to the problem of mixing C++ with the C-based X Window 
system with regard to the use of callback functions (see [YOUNG95] for a discussion). They have also been 
used to successfully interface C++ with C APIs for threading (see [SCHMIDT94a]). 
Ru-Brd  

Ru-Brd  
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4.2 Virtual Member Functions 

We've already seen the general virtual function implementation model: the class-specific virtual table that 
contains the addresses of the set of active virtual functions for the class and the vptr that addresses that 
table inserted within each class object. In this section, I walk through a set of possible designs evolving to 
that model and then step through that model in detail under single, multiple, and virtual inheritance. 

To support a virtual function mechanism, some form of runtime type resolution applied to polymorphic 
objects must be supported. That is, if we have the call 

ptr->z();  

there needs to be some information associated with ptr available at runtime such that the appropriate 
instance of z() can be identified, found, and invoked. 

Perhaps the most straightforward but costly solution is to add the required information to ptr. Under this 
strategy, a pointer (and, implicitly, a reference as well) holds two pieces of information: 

1. The address of the object it refers to (this is what it holds now, of course) 

2. Some encoding of the object's type or the address of a structure containing that information (this is 
what is needed to resolve the correct instance of z()) 

The problem with this solution is two-fold. First, it adds significant space overhead to the use of pointers 
regardless of whether the program makes use of polymorphism. Second, it breaks link compatibility with C. 

If this additional information cannot be placed within the pointer, a next logical place in which to store it is in 
the object itself. This localizes the storage to those objects that need it. But which objects actually need this 
information? Should we place the information within every aggregate that may potentially be inherited from? 
Perhaps. But consider the following C struct declaration: 

struct date { int m, d, y; };  

Strictly speaking, this meets the criterion. In practice, it will never have need of that information. Adding that 
information would bloat the C struct and again break link compatibility without providing any obvious 
compensatory benefits. 

"Okay," you might say, "the additional runtime information should be added only when a class declaration 
explicitly uses the keyword class." Doing this retains language compatibility, but it is still a policy without 
smarts. For example, the following class declaration meets the new criterion: 

class date { public: int m, d, y; };  

But again, in practice, it doesn't need this information. Moreover, the fol-lowing class declaration using the 
keyword struct fails to meet our new criterion, but it does have need of this information: 

struct geom { public: virtual ~geom(); ... };  

What we need is a better criterion—one that is based on the use of the class—and not simply on the presence 
or absence of the class or struct keywords (see Section 1.2). If the class intrinsically needs the information, 
it is there; if it does not, it is not there. Then when exactly is this information needed? Obviously, when some 
form of runtime polymorphic operation needs to be supported. 

In C++, polymorphism "exhibits" itself as the potential addressing of a derived class object through a pointer 
or reference of a public base class. For example, given the declaration 

Point *ptr;  
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we can assign ptr to address either a Point2d object 

Point2d pt2d = new Point2d;  

or a Point3d object 

ptr = new Point3d;  

ptr's polymorphism functions primarily as a transport mechanism by which we can carry the set of types 
publicly derived from it throughout our program. This form of polymorphic support can be characterized as 
passive and, except in the case of a virtual base class, is accomplished during compilation. 

Polymorphism becomes active when the object being addressed is actually used. An invocation of a virtual 
function is one such use: 

// familiar example of active polymorphism  
ptr->z();  

Until the introduction of runtime type identification (RTTI) into the language in 1993, the only support C++ 
provided for active polymorphism was the resolution of a virtual function call. With RTTI, the runtime query of
a polymorphic pointer or reference is also supported (RTTI is discussed in detail in Section 7.3): 

// second example of active polymorphism  
if ( Point3d *p3d =  
     dynamic_cast< Point3d * >( ptr ))  
   return p3d->_z;  

So the problem has been isolated to that of identifying the set of classes that exhibits polymorphism and that 
therefore requires additional runtime information. As we saw, the keywords class and struct by themselves 
don't help us. In the absence of introducing a new keyword—perhaps polymorphic—the only certain way of 
identifying a class intended to support polymorphism is the presence of one or more virtual functions. So the 
presence of at least one virtual function is the criterion for identifying those classes requiring additional 
runtime information. 

The next obvious question is, what additional information, exactly, do we need to store? That is, if we have 
the call 

ptr->z();  

where z() is a virtual function, what information is needed to invoke the correct runtime instance of z()? 
We need to know 

the actual type of the object addressed by ptr. This allows us to choose the correct instance of z(); 
and 

the location of that instance of z() in order to invoke it. 

A first implementation might be to add two members to each polymorphic class object: 

1. A string or numeric representation of the type 

2. A pointer to some table holding the runtime locations of the program's virtual functions 

How might the table containing the virtual function addresses be constructed? In C++, the set of virtual 
functions capable of being invoked through an object of its class is known at compile time. Moreover, this set 
is invariant. It cannot be added to nor can a virtual instance be replaced at runtime. The table, therefore, 
serves only as a passive repository. Since neither its size nor its contents change during program execution, 
its construction and access can be completely handled by the compiler. No runtime intervention is necessary. 

Having the address available at runtime, however, is only half the solution. The other half is finding the 
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address. This is accomplished in two steps: 

1. To find the table, an internally generated virtual table pointer is inserted within each class object. 

2. To find the function's address, each virtual function is assigned a fixed index within the table. 

This is all set up by the compiler. All that is left to do at runtime is invoke the function addressed within the 
particular virtual table slot. 

The virtual table is generated on a per-class basis. Each table holds the addresses of all the virtual function 
instances "active" for objects of the table's associated class. These active functions consist of the following: 

An instance defined within the class, thus overriding a possible base class instance 

An instance inherited from the base class, should the derived class choose not to override it 

Apure_virtual_called() library instance that serves as both a placeholder for a pure virtual 
function and a runtime exception should the instance somehow be invoked 

Each virtual function is assigned a fixed index in the virtual table. This index remains associated with the 
particular virtual function throughout the inheritance hierarchy. In our Point class hierarchy, for example, 

class Point {  
public:  
   virtual ~Point();  
 
   virtual Point& mult( float ) = 0;  
   // ... other operations ...  
 
   float x() const { return _x; }  
   virtual float y() const { return 0; }  
   virtual float z() const { return 0; }  
   // ...  
 
protected:  
   Point( float x = 0.0 );  
   float _x;  
};  

the virtual destructor is likely to be assigned slot 1 and mult() assigned slot 2. (In this case, there is no 
mult() definition, so the address of the library function pure_virtual_called() is placed within the slot. 
If that instance should by some accident get invoked, generally it would terminate the program.) y() is 
assigned slot 3 and z()slot 4. What slot is x() assigned? None because it is not declared to be virtual. Figure
4.1 shows the class layout and virtual table of the Point class. 

Figure 4.1. Virtual Table Layout: Single Inheritance 
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What happens when a class is subsequently derived from Point, such as class Point2d: 

class Point2d : public Point {  
public:  
   Point2d( float x = 0.0, float y = 0.0 )  
      : Point( x ), _y( y ) {}  
   ~Point2d();  
 
   // overridden base class virtual functions  
   Point2d& mult( float );  
   float y() const { return _y; }  
 
   // ... other operations ...  
 
protected:  
   float _y;  
};  

There are three possibilities: 

1. It can inherit the instance of the virtual function declared within the base class. Literally, the address 
of that instance is copied into the associated slot in the derived class's virtual table. 

2. It can override the instance with one of its own. In this case, the address of its instance is placed 
within the associated slot. 

3. It can introduce a new virtual function not present in the base class. In this case, the virtual table is 
grown by a slot and the address of the function is placed within that slot. 
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Point2d's virtual table addresses its destructor in slot 1 and its instance of mult() in slot 2 (replacing the 
pure virtual instance). It addresses its instance of y() in slot 3 and retains Point's inherited instance of z() 
in slot 4. Figure 4.1 also shows the class layout and virtual table of the Point2d class. 

Similarly, a derivation of Point3d from Point2d looks as follows: 

class Point3d: public Point2d {  
public:  
   Point3d( float x = 0.0,  
            float y = 0.0, float z = 0.0 )  
      : Point2d( x, y ), _z( z ) {}  
   ~Point3d();  
 
   // overridden base class virtual functions  
   Point3d& mult( float );  
   float z() const { return _z; }  
 
   // ... other operations ...  
protected:  
   float _z;  
};  

generates a virtual table with Point3d's destructor in slot 1 and Point3d's instance of mult() in slot 2. It 
places Point2d's inherited instance of y() in slot 3 and Point3d's instance of z() in slot 4. Figure 4.1 shows 
the class layout and virtual table of the Point3d class. 

So if we have the expression 

ptr->z();  

how do we know enough at compile time to set up the virtual function call? 

In general, we don't know the exact type of the object ptr addresses at each invocation of z(). We 
do know, however, that through ptr we can access the virtual table associated with the object's class. 

Although we again, in general, don't know which instance of z() to invoke, we know that each 
instance's address is contained in slot 4. 

This information allows the compiler to internally transform the call into 

( *ptr->vptr[ 4 ] )( ptr );  

In this transformation, vptr represents the internally generated virtual table pointer inserted within each 
class object and 4 represents z()'s assigned slot within the virtual table associated with the Point hierarchy. 
The only thing we don't know until runtime is the address of which instance of z() is actually contained in 
slot 4. 

Within a single inheritance hierarchy, the virtual function mechanism is well behaved; it is both efficient and 
easily modeled. Support for virtual functions under multiple and virtual inheritance is somewhat less well 
behaved. 

Virtual Functions under MI 

The complexity of virtual function support under multiple inheritance re-volves around the second and 
subsequent base classes and the need to adjust the this pointer at runtime. With the following simple class 
hierarchy 

// hierarchy to illustrate MI complications  
// of virtual function support  
 
class Base1 {  
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public:  
   Base1();  
   virtual ~Base1();  
   virtual void speakClearly();  
   virtual Base1 *clone() const;  
protected:  
   float data_Base1;  
};  
 
class Base2 {  
public:  
   Base2();  
   virtual ~Base2();  
   virtual void mumble();  
   virtual Base2 *clone() const;  
protected:  
   float data_Base2;  
};  
 
class Derived : public Base1, public Base2 {  
public:  
   Derived();  
   virtual ~Derived();  
   virtual Derived *clone() const;  
protected:  
   float data_Derived;  
};  

all the complexity of virtual function support within the Derived class rests with the Base2 subobject. There 
are three primary cases that require support. These are represented in the example by (1) the virtual 
destructor, (2) the inherited Base2::mumble() instance, and (3) the set of clone() instances. I'll look at 
each in turn. 

First, let's assign a Base2 pointer the address of a Derived class object allocated on the heap: 

Base2 *pbase2 = new Derived;  

The address of the new Derived object must be adjusted to address its Base2 subobject. The code to 
accomplish this is generated at compile time: 

// transformation to support second base class  
Derived *temp = new Derived;  
Base2 *pbase2 = temp ? temp + sizeof( Base1 ) : 0;  

Without this adjustment, any nonpolymorphic use of the pointer would fail, such as 

// ok even if pbase2 assigned Derived object  
pbase2->data_Base2;  

When the programmer now wants to delete the object addressed by pbase2, 

// must first invoke the correct virtual instance  
// of the destructor, then apply operator delete  
// pbase2 may required to be readjusted to address  
// the beginning of the complete object  
delete pbase2;  

the pointer must be readjusted in order to again address the beginning of the Derived class object 
(presuming it still addresses the Derived class object). This offset addition, however, cannot directly be set up
at compile time because the actual object that pbase2 addresses generally can be determined only at 
runtime. 

The general rule is that the this pointer adjustment of a derived class virtual function invocation through a 
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pointer (or reference) of a second or subsequent base class must be accomplished at runtime. That is, the 
size of the necessary offset and the code to add it to the this pointer must be tucked away somewhere by 
the compiler. The obvious first question is where? 

Bjarne's original cfront solution was to augment the virtual table to hold the (possibly) necessary this pointer 
adjustment. Each virtual table slot, rather than simply being a pointer, became an aggregate containing both 
the possible offset and the address. The virtual function call changed from 

( *pbase2->vptr[1])( pbase2 );  

into 

( *pbase2->vptr[1].faddr)  
   ( pbase2 + pbase2->vptr[1].offset );  

where faddr held the virtual function address and offset held the necessary this pointer adjustment. 

The criticism of this solution is that it penalizes all virtual functions' invocations regardless of whether the 
offset adjustment is necessary, both in the cost of the extra access and addition of offset and in the 
increased size of each virtual table slot. 

The more efficient solution is the use of a thunk. (When I first learned of the thunk, my professor jokingly 
told us that thunk is knuth spelled backwards and therefore he attributed the technique to Dr. Knuth.) First 
introduced in compiler technology, I believe, in support of ALGOL's unique pass-by-name semantics, the 
thunk is a small assembly stub that (a) adjusts the this pointer with the appropriate offset and then (b) 
jumps to the virtual function. For example, the thunk associated with the call of the Derived class destructor 
through a Base2 pointer might look as follows: 

// Pseudo C++ code  
pbase2_dtor_thunk:  
   this += sizeof( base1 );  
   Derived::~Derived( this );  

(It is not that Bjarne was unaware of thunks. The problem is that a thunk is efficient only as an assembly 
code stub, not as a full-blown function call. Since cfront used C as its code generation language, it could not 
provide an efficient thunk implementation.) 

The thunk implementation allows for the virtual table slot to remain a simple pointer, thereby removing any 
space overhead within the virtual table for the support of multiple inheritance. The address placed within 
each slot either directly addresses the virtual function or addresses an associated thunk, if an adjustment of 
the this pointer is necessary. This removes additional performance overhead on virtual functions that do not 
require this pointer adjustment. (This is believed to be the vast majority, although I have not seen any 
numbers.) 

A second overhead of the this pointer adjustment is multiple entries for the same function depending on 
whether it is invoked through the derived (or leftmost base class) or through the second (or subsequent) 
base class. For example, 

Base1 *pbase1 = new Derived;  
Base2 *pbase2 = new Derived;  
 
delete pbase1;  
delete pbase2;  

Although both delete invocations result in the execution of the same Derived class destructor, they require 
two unique virtual table entries: 

1. pbase1 does not require a this pointer adjustment (being leftmost, it already points to the beginning 
of the Derived class object). Its virtual table slot requires the actual destructor address. 

2. pbase2 does require a this pointer adjustment. Its virtual table slot requires the address of the 
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associated thunk. 

Under multiple inheritance, a derived class contains n – 1 additional virtual tables, where n represents the 
number of its immediate base classes (thus single inheritance introduces zero additional tables). For the 
Derived class, then, two virtual tables are generated: 

1. The primary instance shared with Base1, its leftmost base class 

2. A secondary instance associated with Base2, the second base class 

The Derived class object contains a vptr for each associated virtual table. (This is shown in Figure 4.2.) The 
vptrs are initialized within the constructor(s) through code generated by the compiler. 

Figure 4.2. Virtual Table Layout: Multiple Inheritance 

 

The traditional approach to supporting multiple virtual tables associated with a class is to generate each as an
external object with a unique name. For example, the two tables associated with Derived are likely to be 
named 

vtbl__Derived; // the primary table  
vtbl__Base2__Derived; // the secondary table  

Thus when a Base1 or Derived pointer is assigned the address of a Derived class object, the virtual table 
being accessed is the primary virtual table vtbl__Derived. When a Base2 pointer is assigned the address of
a Derived class object, the virtual table being accessed is the second virtual table vtbl__Base2__Derived. 

With the advent of runtime linkers in support of dynamic shared libraries, the linking of symbolic names can 
be extremely slow—up to 1 ms per name, for example, on a SparcStation 10. To better accommodate the 
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performance of the runtime linker, the Sun compiler concatenates the multi-ple virtual tables into one. The 
pointers to the secondary virtual tables are generated by adding an offset to the name of the primary table. 
Under this strategy, each class has only one named virtual table. "For code used on a number of Sun projects 
[the speedup] was quite noticeable." [2] 

[2] From correspondence with Mike Ball, architect of the Sun C++ compiler.

 

Earlier in the chapter I wrote that there are three cases in which the presence of a second or subsequent 
base class affects the support of virtual functions. In the first case, the derived class virtual function is 
invoked through a pointer of the second base class. For example, 

Base2 *ptr = new Derived;  
 
// invokes Derived::~Derived  
// ptr must be adjusted backward by sizeof( Base1 )  
delete ptr;  

From Figure 4.2, you can see that at the point of the invocation, ptr addresses the Base2 subobject within 
the Derived class object. For this to execute correctly, ptr must be adjusted to address the beginning of the 
Derived class object. 

The second case is a variant of the first and involves the invocation of an inherited virtual function of the 
second base class through a pointer of the derived class. In this case, the derived class pointer must be 
readjusted to address the second base subobject. For example, 

Derived *pder = new Derived;  
 
// invokes Base2::mumble()  
// pder must be adjusted forward by sizeof( Base1 )  
pder->mumble();  

The third case fell out of a language extension that allows the return type of a virtual function to vary with 
regard to the base and publicly derived types of an inheritance hierarchy. This is illustrated by the 
Derived::clone() instance. The Derived instance of clone() returns a Derived class pointer but still 
overrides its two base class instances of clone(). The this pointer offset problem occurs when invoking 
clone() through a pointer of a second base class: 

Base2 *pb1 = new Derived;  
 
// invokes Derived* Derived::clone()  
// return must be adjusted to address Base2 subobject  
Base2 *pb2 = pb1->clone();  

The Derived class instance of clone() is invoked and uses the thunk to readjust pb1 to address the 
beginning of the Derived class object. Now clone() returns a pointer to a new Derived class object, and the 
address must be adjusted to point to the Base2 subobject before being assigned to pb2. 

The Sun compiler has implemented a strategy of "split functions" when the functions are deemed "small": 
Two functions are generated with the same algorithmic code. The second instance, however, adds the 
necessary offset to the pointer before returning it. Thus an invocation through either a Base1 or Derived 
pointer invokes the instance without the return adjustment, while an invocation through a Base2 pointer 
invokes the other instance. 

When the functions are deemed "not small," the split function strategy gives way to one of multiple entry 
points within the function. Mike Ball estimates that this solution costs about three instructions per entry. 
Programmers not experienced with the OO paradigm might question the applicability of the split function, 
since it is limited to small functions. OO programming, however, promotes a style of localizing operations in 
many small virtual functions, often on the average of eight lines each. [3] 

[3] An average length of eight lines for a virtual function is something I read somewhere—of course I've lost the 
citation. This confirms to my own experience, however. 
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Function support for multiple entry points can eliminate the generation of many thunks. IBM, for example, is 
folding the thunk into the actual virtual function being invoked. The this pointer adjustment is executed at 
the top of the function; execution then falls through to the user portion of the code. Invocations not requiring 
the adjustment enter below that code. 

Microsoft has patented a thunk elimination strategy based on what it calls "address points." The overriding 
function is set up to expect the address not of the derived class but of the class introducing the virtual 
function. This is the address point for the function (see [MICRO92] for a full discussion). 

Virtual Functions under Virtual Inheritance 

Consider the following virtual base class derivation of Point3d from Point2d: 

class Point2d {  
public:  
   Point2d( float = 0.0, float = 0.0 );  
   virtual ~Point2d();  
 
   virtual void mumble();  
   virtual float z();  
   // ...  
protected:  
   float _x, _y;  
};  
 
class Point3d : public virtual Point2d  
public:  
   Point3d( float = 0.0, float = 0.0, float = 0.0 );  
   ~Point3d();  
 
   float z();  
protected:  
   float _z;  
};  

Although Point3d has a single leftmost base class—Point2d—the beginning of Point3d and Point2d is no longer
coincident (as they are under nonvirtual single inheritance). This is shown in Figure 4.3. Since the Point2d 
and Point3d objects are no longer coincident, conversion between the two also requires a this pointer 
adjustment. Efforts to eliminate thunks under virtual inheritance in general have proved much more difficult. 

Figure 4.3. Virtual Table Layout: Virtual Inheritance 
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Virtual base class support wanders off into the Byzantine when a virtual base class is derived from another 
virtual base class and support both virtual functions and nonstatic data members. Although I have a folder 
full of examples worked out and more than one algorithm for determining the proper offsets and 
adjustments, the material is simply too esoteric to warrant discussion in this text. My recommendation is not 
to declare nonstatic data members within a virtual base class. Doing that goes a long way in taming the 
complexity. 
Ru-Brd  

Ru-Brd  

4.3 Function Efficiency 

In the following set of tests, the cross-product of two three-dimensional points is calculated, in turn, as a 
nonmember friend function, a member function, an inline member function, and a virtual member function. 
The virtual member function instance is then executed under single, multiple, and virtual inheritances. Here is
the cross-product implementation dressed up as a nonmember: 

void  
cross_product( const pt3d &pA, const pt3d &pB )  
{  
   pt3d pC;  
 
   pC.x = pA.y * pB.z - pA.z * pB.y;  
   pC.y = pA.z * pB.x - pA.x * pB.z;  
   pC.z = pA.x * pB.y - pA.y * pB.x;  
}  

The main() function looks as follows (in this example invoking the cross-product as a nonmember function): 

main() {  
   pt3d pA( 1.725, 0.875, 0.478 );  
   pt3d pB( 0.315, 0.317, 0.838 );  
 
   for ( int iters = 0; iters < 10000000; iters++ )  
         cross_product( pA, pB );  
 
   return 0;  
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}  

with the actual invocation of cross_product() varying as its representation alters across the different test 
programs. Table 4.1 shows the result of executing the test. 

As the discussion in Section 4.2 shows, a nonmember, static member, and nonstatic member function are 
internally transformed into equivalent representations. So it's not surprising to see that there is no difference 
in performance between these three forms. 

Nor is it surprising to see an approximately 25% performance speedup in the non-optimized inline version. 
The results of the optimized inline version, on the other hand, seems to border on the miraculous. What is 
going on? 

The spectacular results are accounted for by the expressions—recognized as invariant—being hoisted out of 
the loop and therefore calculated only once. As this example illustrates, inline expansion not only saves the 
overhead associated with a function call but also provides additional opportunities for program optimization. 

The virtual function instance was invoked through a reference rather than an object in order to make sure the
invocation went through the virtual mechanism. The slowdown in performance varies from 4% to 11%. Some 
of the cost is reflected in the increased overhead of the Point3d constructor in setting the internal vptr 10 
million times. Additional cost is accounted for by the fact that both CC and NCC (at least in NCC's cfront-
compatible mode) use the delta-offset model to support virtual functions. 

Recall that under this model, the offset required to adjust the this pointer to the proper address is stored 
within the virtual table. All invocations of the form 

ptr->virt_func();  

are transformed into a form like 

// invocation of the virtual function  
(*ptr->__vptr[ index ].addr)  
   // passage of the adjusted this pointer  
   ( ptr + ptr->__vptr[ index ].delta )  

even though in most invocations, the stored value is 0 (only in the case of a second or subsequent base class 
or a virtual base class is the delta nonzero). Under this implementation, virtual invocation under both single 
and multiple inheritances share the same overhead. Under the thunk model, of course, the this pointer 
adjustment costs are localized to those calls requiring it. 

The one puzzling result under these two implementations is the additional cost of the virtual function 

Table 4.1. Function Performance 

                  Optimized       Non-optimized 
Inline Member        0.08              4.70  
Nonmember Friend     4.43              6.13  
  
Static Member        4.43              6.13  
  
Nonstatic Member     4.43              6.13  
  
Virtual Member  
   CC                4.76              6.90  
   NCC               4.63              7.72  
  
Virtual Member: Multiple Inheritance  
   CC                4.90              7.06  
   NCC               4.96              8.00  
 
Virtual Member: Virtual Inheritance  
   CC                5.20              7.07  
   NCC               5.44              8.08 
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invocation under multiple inheritance. This is what one would expect by invoking a virtual function belonging 
to a second or subsequent base class with a compiler implementing the thunk model, but not with these two 
compilers. Because the this pointer adjustment is applied under both single and multiple inheritances, that 
overhead could not be accounting for the cost. 

When I ran the tests under single inheritance, I was also puzzled to find that with each additional level of 
inheritance I added, the performance time of the virtual function executable increased significantly. At first, I 
couldn't imagine what was going on. Then, finally, after I stared at the code long enough, it dawned on me. 
The code within the main loop invoking the function is exactly the same regardless of the depth of the single 
inheritance hierarchy. Similarly, the manipulation of the coordinate values is exactly the same. The 
difference, which I had not earlier considered, is the presence of the local Point3d class object pC within 
cross_product(). In this implementation of cross_product(), the default Point3d constructor (no 
destructor is defined) is being applied a total of 10 million times. The increased cost of the executable with 
each additional level of single inheritance reflected the additional complexity of the constructor code being 
applied to pC. This also explained the additional overhead of the multiple inheritance call. 

With the introduction of the virtual function, the class constructor is augmented to set the virtual table 
pointer within the constructor. Neither CC nor NCC optimize away the setting of the vptr in base class 
constructors in which there are no possible virtual function invocations, so each additional level of inheritance 
adds an additional setting of the vptr. In addition, in the CC and NCC versions the following test is inserted 
within the constructor for backward compatibility with pre-Release 2.0 versions of the language: 

// invoked within each base & derived class constructor  
if ( this || this = new( sizeof( *this ))  
   // user code goes here  

Prior to the introduction of class instances of operators new and delete, the only method of assuming 
memory management of the class was to assign to the this pointer within the constructor. The previous 
conditional test supports that. For cfront, backward compatibility for the semantics of "assignment to this" 
was promised until Release 4.0 (for various arcane reasons that are definitely beneath the scope of this text). 
Ironically, because NCC is distributed by SGI in "cfront compatibility mode," NCC also provides this backward 
compatibility. Except for backward compatibility, there is no longer any reason to include the conditional test 
within the constructor. Modern implementations separate invocation of operator new as an operation 
separate from the invocation of the constructor (Section 6.2), and the assignment to this semantics are no 
longer supported by the language. 

Each additional base class or additional level of single inheritance under these implementations adds another 
(in this case totally unnecessary) test of the this pointer to the constructor. Execute the constructor 10 
million times, and the performance slowdown becomes measurable. (This performance clearly reflects an 
implementation anomaly and not an aspect of the object model itself.) 

In any case, I wanted to see if the additional expense of the constructor invocation was accounting for the 
additional performance time. I rewrote the function in two alternative styles that did away with the local 
object: 

1. I added the object to hold the result as an additional argument to the function:  

    void  
    cross_product( pt3d &pC, const pt3d &pA, const pt3d  
&pB )  
    {  
       pC.x = pA.y * pB.z - pA.z * pB.y;  
       // the rest the same ...  
    }  

2. I computed the result directly in the this object: 

void  
pt3d::  
cross_product(const pt3d &pB )  
{  
   x = y * pB.z - z * pB.y;  
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   // the rest the same except that we use  
   // the x, y, and z of this object ...  
}  

In both cases, this resulted in a uniform, average non-optimized execution time of 6.90 across the levels of 
single inheritance. 

What's interesting is that the language does not provide a mechanism by which to indicate that an invocation 
of a default constructor is unnecessary and should be elided. That is, the declaration of the local pC class 
object does not in our use of it require a constructor to be applied, but we can eliminate its invocation only by
eliminating our use of the local object. 

 
Ru-Brd  

Ru-Brd  

4.4 Pointer-to-Member Functions 

In Chapter 3, we saw that the value returned from taking the address of a nonstatic data member is the byte 
value of the member's position in the class layout (plus 1). One can think of it as an incomplete value. It 
needs to be bound to the address of a class object before an actual instance of the member can be accessed. 

The value returned from taking the address of a nonstatic member function, if it is nonvirtual, is the actual 
address in memory where the text of the function is located. This value, however, is equally incomplete. It, 
too, needs to be bound to the address of a class object before an actual invocation of the member function is 
possible. The object's address serves as the this pointer argument required by all nonstatic member 
functions. 

Recall that the syntax of declaring a pointer-to-member function is 

double          // return type  
( Point::*            // class the function is member  
  pmf )         // name of pointer to member  
();             // argument list  

Thus one writes 

double (Point::*coord)() = &Point::x;  

to define and initialize a pointer to class member and writes 

coord = &Point::y;  

to assign a value to it. Invocation uses the pointer-to-member selection operators, either 

( origin.*coord )();  

or 

( ptr->*coord )();  

These are converted internally by the compiler to, respectively, 

// Pseudo C++ Code  
( coord )( & origin );  

and 

// Pseudo C++ Code  
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( coord )( ptr );  

The pointer-to-member function declaration syntax and pointer-to-member selection operators serves literally
as placeholders for the this pointer. (This is why static member functions, which are without a this pointer, 
are of type "pointer to function," not "pointer-to-member function.") 

Use of a pointer to member would be no more expensive than a nonmember pointer to function if it weren't 
for virtual functions and multiple inheritance (including, of course, virtual base classes), which complicate 
both the type and invocation of a pointer to member. In practice, for those classes without virtual functions 
or virtual or multiple base classes, the compiler can provide equivalent performance. In the next section, I 
look at how support for virtual functions complicates support for pointer-to-member functions. 

Supporting Pointer-to-Virtual-Member Functions 

Consider the following code fragment: 

float (Point::*pmf)() = &Point::z;  
Point *ptr = new Point3d;  

pmf, a pointer to member, is initialized to address the virtual function pointer::z(). ptr is initialized to 
address an object of type Point3d. If we invoke z() directly through ptr: 

ptr->z();  

the instance invoked is Point3d::z(). What happens if we invoke z() indirectly through pmf: 

( ptr->*pmf)();  

Is Point3d::z() still invoked? That is, does the virtual mechanism work using pointer-to-member 
functions? The answer, of course, is yes. The question is how? 

In the previous section, we saw that taking the address of a nonstatic member function yielded its address in 
memory. With regard to a virtual function, however, that address is unknown at compile time. What is known 
is the function's associated index into the virtual table. That is, taking the address of a virtual member 
function yields its index into its class's associated virtual table. 

For example, if we have the following simplified declaration of Point: 

class Point  
{  
public:  
   virtual ~Point();  
   float x();  
   float y();  
   virtual float z();  
   // ...  
};  

then taking the address of the destructor 

&Point::~Point;  

yields 1. Taking the address of either x() or y() 

&Point::x;  
&Point::y;  

yields their actual memory locations, since they are not virtual. Taking the address of z() 

&Point::z;  
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yields 2. The invocation of z() through pmf, then, becomes translated internally into a compile-time 
expression of the following general form: 

( * ptr->vptr[ (int)pmf ])( ptr );  

Evaluation of a pointer-to-member function is complicated by the dual values it can hold and by the very 
different invocation strategies those values require. The internal definition of pmf, that is, 

float (pointer::*pmf)();  

must permit the function to address both the nonvirtual x() and the virtual z() member function. They both 
have the same function prototype: 

// both can be assigned to pmf  
float point::x(){ return _x; }  
float point::z(){ return 0; }  

although one yields an address in memory (a large number) and the other an index into the virtual table (a 
small number). Internally, the compiler must define pmf such that (a) it can hold both values and (b) more 
important, the type of the value can be distinguished. Any ideas? 

In the pre-Release 2.0 cfront implementation, both values were contained in an ordinary pointer. How did 
cfront distinguish between an actual memory address and an index into the virtual table? It used the 
following trick: 

((( int ) pmf ) & ~127 )  
   ? // non-virtual invocation  
   ( *pmf )( ptr )  
 
   : // virtual invocation  
   ( * ptr->vptr[ (int) pmf ]( ptr );  

As Stroustrup wrote [LIPP88]: 

Of course, this implementation assumes a limit of 128 virtual functions to an inheritance graph. This is not 
desirable, but in practice it has proved viable. The introduction of multiple inheritance, however, requires a 
more general implementation scheme and provides an op-portunity to remove the limit on the number of 
virtual functions. 

Pointer-to-Member Functions under MI 

For pointers to members to support both multiple and virtual inheritances, Stroustrup designed the following 
aggregate structure (see [LIPP88] for the original presentation): 

// fully general structure to support  
// pointer to member functions under MI  
struct __mptr {  
   int delta;  
   int index;  
   union {  
      ptrtofunc  faddr;  
      int        v_offset;  
   };  
};  

What do these members represent? The index and faddr members, respectively, hold either the virtual 
table index or the nonvirtual member function address. (By convention, index is set to –1 if it does not index
into the virtual table.) Under this model, an invocation such as 

( ptr->*pmf )()  
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becomes 

( pmf.index < 0 )  
   ? // non-virtual invocation  
   ( *pmf.faddr )( ptr )  
 
   : // virtual invocation  
   ( * ptr->vptr[ pmf.index ]( ptr );  

One criticism of this approach is that every invocation is charged with the cost of checking whether the call is 
virtual or nonvirtual. Microsoft removed this check (and therefore the presence of the index member) by 
introducing what it terms a vcall thunk. Under this strategy, faddr is assigned either the actual member 
function address—if the function is nonvirtual—or the address of the vcall thunk. Invocation of both virtual 
and nonvirtual instances are transparent; the vcall thunk extracts and invokes the appropriate slot of the 
associated virtual table. 

A second side effect of this aggregate representation is the need to generate a temporary object when 
passing a literal pointer to member. For example, if we have the following: 

extern Point3d foo( const Point3d&, Point3d (Point3d::*)() );  
void bar( const Point3d& p ) {  
   Point3d pt = foo( p, &Point3d::normal );  
   // ...  
}  

the value of the expression 

&Point3d::normal  

is something like 

{ 0, -1, 10727417 }  

and requires the generation of a temporary object initialized with the explicit values 

// Pseudo C++ code  
__mptr temp = { 0, -1, 10727417 };  
 
foo( p, temp );  

The delta member represents the this pointer offset, while the v_offset member holds the location of the 
vptr of a virtual (or second or subsequent) base class. (If the vptr is placed at the beginning of the class 
object, this field becomes unnecessary. The trade off is in decreased C object compatibility. See Section 3.4.) 
Both of these members are necessary only in the presence of either multiple or virtual inheritance, and so 
many compilers provide multiple internal pointer-to-member representations based on the characteristics of 
the class. Microsoft, for example, provides three flavors: 

1. A single inheritance instance (which simply holds either the vcall thunk or function address) 

2. A multiple inheritance instance (which holds the faddr and delta members) 

3. A virtual inheritance instance (which holds four members!) 

Pointer-to-Member Efficiency 

In the following set of tests, the cross-product function is invoked indirectly in turn through a pointer to a 
nonmember function, a pointer to a class member function, a pointer to a virtual member function, and then 
as a set of calls to nonvirtual and virtual member functions of multiple inheritance and virtual inheritance 
hierarchies. In the first test, a pointer to a nonmember cross-product implementation is executed by using 
the following main() function: 
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main() {  
   pt3d pA( 1.725, 0.875, 0.478 );  
   pt3d pB( 0.315, 0.317, 0.838 );  
   pt3d* ( *pf )( const pt3d&, const pt3d& ) =  
      cross_product;  
 
   for ( int iters = 0; iters < 10000000; iters++ )  
       ( *pf)( pA, pB );  
 
   return 0;  
}  

where the declaration and invocation of the pointer-to-class member looks as follows: 

pt3d* (pt3d::*pmf)(const pt3d& ) const =  
       &pt3d::cross_product;  
 
for ( int iters = 0; iters < 10000000; iters++ )  
        (pA.*pmf)( pB );  

The support of pointer-to-class member functions under both CC and NCC takes the following internal form. 
The call 

(*pA.pmf)( pB );  

becomes transformed into the general conditional test 

pmf.index < 0  
   ? ( *pmf.faddr )( &pA + pmf.delta )  
   : ( *pA.__vptr__pt3d[ pmf.index].faddr )( &pA +  
      pA.__vptr_pt3d[pmf.index].delta, pB)  

Recall that a pointer-to-member is a structure holding three members: index, faddr, and delta. index 
either holds an index into the virtual function table or is set to -1 to indicate the member function is 
nonvirtual. faddr holds the nonvirtual member function's address. delta holds a possible this pointer 
adjustment. Table 4.2 shows the result of executing the test. 

Table 4.2. Pointer to Function Performance 

                  Optimized        Non-optimized 
 
Pointer-to-Nonmember Function ( void (*p)( ... ))  
                     4.30               6.12  
  
Pointer-to-Member Function (PToM): Non-Virtual  
   CC                4.30               6.38  
   NCC               4.89               7.65  
  
PToM: Multiple Inheritance: Nonvirtual  
   CC                4.30               6.32  
   NCC               5.25               8.00  
  
PToM: Virtual Inheritance: Nonvirtual  
   CC                4.70               6.84  
   NCC               5.31               8.07  
  
Pointer-to-Member Function (PToM): Virtual  
   CC                4.70               7.39  
   NCC               5.64               8.40  
  
PToM: Multiple Inheritance: Virtual  
(Note: CC generated bad code that Segment Faulted)  
   NCC               5.90               8.72  
  
PToM: Virtual Inheritance: Virtual  
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(Note: CC generated bad code that Segment Faulted)  
   NCC               5.84               8.80 

Ru-Brd  

Ru-Brd  

4.5 Inline Functions 

Here is a possible implementation of the addition operator for our Point class: 

class Point {  
   friend Point  
       operator+( const Point&, const Point& );  
   ...  
};  
 
Point  
operator+( const Point &lhs, const Point &rhs )  
{  
   point new_pt;  
 
   new_pt._x = lhs._x + rhs._x;  
   new_pt._y = lhs._y + rhs._y;  
 
   return new_pt;  
}  

In theory, a cleaner implementation would make use of the inline set and get public access functions: 

// void Point::x( float new_x ) { _x = new_x; }  
// float Point::x() { return _x; }  
 
new_pt.x( lhs.x() + rhs.x() );  

By restricting direct access to the _x data member to these two functions, we minimize the impact of any 
later change in the representation of the data member, for example, moving it up or down the inheritance 
hierarchy. By declaring these access functions inline, we maintain the performance efficiency of direct 
member access, while achieving the encapsulation of a function call. Moreover, the addition operator need no 
longer be declared a friend of Point. 

In practice, however, we cannot force the inlining of any particular function, although a cfront customer once 
issued a high-priority modification request asking for the addition of a must_inline keyword. The inline 
keyword (or the definition of a member function (or friend) within a class declaration) is only a request. For 
the request to be honored, the compiler must believe it can "reasonably" expand the function in an arbitrary 
expression. 

When I say the compiler believes it can "reasonably" expand an inline function, I mean that at some level the 
execution cost of the function is by some measure less than the overhead of the function call and return 
mechanism. cfront determines this by a complexity measure heuristic, usually by counting the number of 
assignments, the number of function calls, the number of virtual function calls, and so on. Each category of 
expression is weighted, and the complexity of the inline function is determined as a sum of its operations. 
Obviously, the values assigned to the complexity measure are open to debate. 

In general, there are two phases to the handling of an inline function: 

1. The analysis of the function definition to determine the "intrinsic inline-ability" of the function (intrinsic 
in this context means unique to an implementation). 

If the function is judged non-inlineable, due either to its complexity or its construction, it is turned into a 
static function and a definition is generated within the module being compiled. In an environment supporting 
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separately compiled modules, there is little alternative for the compiler. Ideally, a linker cleans up the 
multiple instances generated. In general, however, current linkers doing this do not clean up any debugging 
information also generated with the call. This can be done via the UNIX strip command. 

2. The actual inline expansion of the function at a point of call. This involves argument evaluation and 
management of temporaries. 

It is at this point of expansion that an implementation determines whether an individual call is non-inlineable. 
In cfront, for example, a second or subsequent invocation of the same inline function within a single 
expression, such as our theoretically improved use of the Point class access functions  

new_pt.x( lhs.x() + rhs.x() );  

is not expanded. That is, under cfront, this expression becomes  

// Pseudo C++ code suggesting inline expansion  
new_pt._x = lhs._x + x__5PointFV( &rhs );  

which is not at all an improvement! All we can do at this point is rewrite the expression to work around a 
timid inline implementation:  

// yuck:  fix the inline support :-(  
new_pt.x( lhs._x + rhs._x );  

The comment, of course, is necessary to let future readers of our code know that we considered using the 
public inline interface and had to back off! 

Are other compilers as restricted as cfront in handling inline expansion? No. However, compiler vendors en 
mass (that is, both on the UNIX and PC side) unfortunately seem to consider it unnecessary to discuss in any 
detail the extent of or constraints on their inline support. In general, you have to poke around the assembler 
to see what has or hasn't been inlined. 

Formal Arguments 

What actually happens during an inline expansion? Each formal argument is replaced with its corresponding 
actual argument. If the actual argument exhibits a side effect, it cannot simply be plugged into each 
occurrence of the formal argument—that would result in multiple evaluations of the actual argument. In 
general, handling actual arguments that have side effects requires the introduction of a temporary object. If, 
on the other hand, the actual argument is a constant expression, we'd like it to be evaluated prior to its 
substitution; subsequent constant folding may also be performed. If it is neither a constant expression nor an 
expression with side effects, a straight substitution of each actual argument with the associated formal 
argument is carried out. 

For example, say we have the following simple inline function: 

inline int  
min( int i, int j )  
{  
   return i < j ? i : j;  
}  

and the following three invocations of the inline function: 

inline int  
bar()  
{  
   int minval;  
   int val1 = 1024;  
   int val2 = 2048;  
 
/*(1)*/minval = min( val1, val2 );  
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/*(2)*/minval = min( 1024, 2048 );  
/*(3)*/minval = min( foo(), bar()+1 );  
 
   return minval;  
}  

The inline expansion of the line marked (1) is a straightforward substitution: 

//(1)     simple argument substitution  
minval = val1 < val2 ? val1 : val2;  

while the inline expansion of the line marked (2) involves constant folding: 

//(2)     constant folding following substitution  
minval = 1024;  

Finally, the inline expansion of the line marked (3) involves argument side effects and the introduction of a 
temporary object in order to avoid multiple evaluations: 

//(3)     side-effects and introduction of temporary  
int t1;  
int t2;  
 
minval =  
   ( t1 = foo() ), ( t2 = bar() + 1 ),  
   t1 < t2 ? t1 : t2;  

Local Variables 

What if we change the definition slightly, adding a local variable to the inline definition: 

inline int  
min( int i, int j )  
{  
   int minval = i < j ? i : j;  
   return minval;  
}  

What support or special handling does the local variable require? For example, if we have the following call of 
min(): 

{  
   int local_var;  
   int minval;  
 
   // ...  
   minval = min( val1, val2 );  
}  

an expansion that maintained the local variable might look something like the following (in theory, in this 
example the local inline variable can be optimized out and the value directly computed on minval): 

{  
   int local_var;  
   int minval;  
   // mangled inline local variable  
   int __min_lv_minval;  
 
   minval =  
      ( __min_lv_minval =  
         val1 < val2 ? val1 : val2 ),  
         __min_lv_minval;  
{  
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In general, each local variable within the inline function must be introduced into the enclosing block of the call
as a uniquely named variable. If the inline function is expanded multiple times within one expression, each 
expansion is likely to require its own set of the local variables. If the inline function is expanded multiple 
times in discrete statements, however, a single set of the local variables can probably be reused across the 
multiple expansions. 

The combination of local variables within an inline function together with arguments to the call with side 
effects can result in a surprising number of internally generated temporaries within the site of the expansion, 
particularly if it is expanded multiple times within a single expression. For example, the following call 

minval = min( val1, val2 ) + min( foo(), foo()+1 );  

might be expanded as follows: 

// generated temps for local variable  
int __min_lv_minval__00;  
int __min_lv_minval__01;  
 
// generated temps to hold side-effects  
int t1;  
int t2;  
 
minval =  
   (( __min_lv_minval__00 =  
       val1 < val2 ? val1 : val2 ),  
      __min_lv_minval__00 )  
   +  
   (( __min_lv_minval__01 = ( t1 = foo() ),  
      ( t2 = foo() + 1 ),  
      t1 < t2 ? t1 : t2 ),  
      __min_lv_minval__01 );  

Inline functions provide a necessary support for information hiding by providing efficient access to nonpublic 
data encapsulated within a class. They are also a safe alternative to the #define preprocessor macro 
expansion relied on so heavily in C. (This is particularly true if the arguments to the macro contain side 
effects.) However, an inline expansion, if invoked enough times within a program, can generate a great deal 
more text than may at first seem obvious from its definition and so result in unsuspected "code bloat." 

As I've demonstrated, arguments with side effects, multiple calls within a single expression, and multiple 
local variables within the inline itself can all create temporaries that the compiler may or may not be able to 
remove. Also, the expansion of inlines within inlines can cause a seemingly trivial inline to not be expanded 
due to its "concatenated complexity." This may occur in constructors for complex class hierarchies or in a 
chain of seemingly innocent inline calls within an object hierarchy, each of which executes a small set of 
operations and then dispatches a request to another object. Inline functions provide a powerful tool in the 
production of safe but efficient programs. They do, however, require more attention than their equivalent 
non-inline instances. 
Ru-Brd  

Ru-Brd  

Chapter 5. Semantics of Construction, Destruction, and Copy 

Consider the following abstract base class declaration: 

class Abstract_base {  
public:  
   virtual ~Abstract_base() = 0;  
   virtual void interface() const = 0;  
   virtual const char*  
      mumble () const { return _mumble; }  
protected:  
   char *_mumble;  
};  
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Do you see any problems? Although the class is designed to serve as an abstract base class (the presence of 
a pure virtual function disallows independent instances of Abstract_base to be created), the class still requires
an explicit constructor in order to initialize its one data member, _mumble. Without that initialization, a local 
object of a class derived from Abstract_base will have its instance of _mumble uninitialized. For example: 

class Concrete_derived : public Abstract_base {  
public:  
   Concrete_derived();  
   // ...  
};  
void foo()  
{  
   // Abstract_base::_mumble uninitialized  
   Concrete_derived trouble;  
   // ...  
}  

One might argue that the designer of Abstract_base intended for each class derived from it to provide a first 
value for _mumble. However, if that's the case, the only way to require that of the derived class is to provide 
a protected Abstract_base constructor that takes one argument: 

Abstract_Base::  
Abstract_Base( char *mumble_value = 0 )  
   : _mumble( mumble_value )  
   {}  

In general, the data members of a class should be initialized and assigned to only within the constructor and 
other member functions of that class. To do otherwise breaks encapsulation, thereby making maintenance 
and modification of the class more difficult. 

Alternatively, one might argue that the design error is not the absence of an explicit constructor, but rather 
the declaration of a data member within an abstract base class. This is a stronger argument (separating 
interface and implementation), but it does not hold universally. Lifting up data members shared among 
several derived types can be a legitimate design choice. 
Ru-Brd  

Ru-Brd  

Presence of a Pure Virtual Destructor 

Programmers new to C++ are often surprised to learn that one may both define and invoke a pure virtual 
function, provided it is invoked statically and not through the virtual mechanism. For example, one can legally
code the following: 

// ok:  definition of pure virtual function  
//      but may only be invoked statically ...  
 
inline void  
Abstract_base::interface()  
{  
   // ...  
}  
inline void  
Concrete_derived::interface()  
{  
   // ok: static invocation  
   Abstract_base::interface();  
 
   // ...  
}  

Whether one does so is a decision left to the class designer in all but one instance. The exception is a pure 
virtual destructor: It must be defined by the class designer. Why? Every derived class destructor is internally 
augmented to statically invoke each of its virtual base and immediate base class destructors. The absence of 
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a definition of any of the base class destructors in general results in a link-time error. 

One could argue, shouldn't the invocation of a pure virtual destructor be suppressed by the compiler during 
the augmentation of the destructor of the derived class? No. The class designer may actually have defined an 
instance of the pure virtual destructor (just as Abstract_base:: interface() is defined in the previous 
example). The design itself may depend on the language's guarantee that each destructor within the 
hierarchy of a class object is invoked. The compiler cannot suppress the call. 

But one then could argue, shouldn't the compiler know enough to synthesize the definition of the pure virtual 
destructor if the designer of the class either forgot or did not know it needed to be defined? No. The compiler 
by itself can't know that because of the separate compilation model of an executable. An environment may 
provide a facility to discover the absence at link time and to reinvoke the compiler with a directive to 
synthesize an instance, but I am not aware of any current implementation that does so. 

A better design alternative is to not declare a virtual destructor as pure. 
Ru-Brd  

Ru-Brd  

Presence of a Virtual Specification 

Abstract_base::mumble_set() is a bad choice for a virtual function because its algorithm is not type 
dependent and is therefore highly unlikely to be overridden by a subsequent derived class. Moreover, 
because its nonvirtual implementation is inline, the performance penalty may be significant if it is frequently 
invoked. 

However, couldn't a compiler, through analysis, determine that only a single instance of the function exists 
within the class hierarchy. In so doing, could it not transform the call into a static invocation, thereby 
allowing for the inline expansion of the call? But what happens if the hierarchy is subsequently added to and 
the new class introduces a new instance of the function? This new class invalidates the optimization. The 
function must now be recompiled (or perhaps a second, polymorphic instance generated, with the compiler 
determining through flow analysis which instance needs to be invoked). The function, however, may exist as 
a binary within a library. Unearthing this dependency is likely to require some form of persistent program 
database or library manager. 

In general, it is still a bad design choice to declare all functions virtual and to depend on the compiler to 
optimize away unnecessary virtual invocations. 

 
Ru-Brd  

Ru-Brd  

Presence of const within a Virtual Specification 

Determining the const-ness of a virtual function may seem rather trivial, but in practice it is not easy to do 
within an abstract base class. Doing so means predicting the usage of a potentially infinite number of 
subclass implementations. Not declaring a function const means the function cannot be called by a const 
reference or const pointer argument—at least not without resorting to a casting away of the const. 
Considerably more problematic is declaring a function const and then discovering that, in practice, a derived 
instance really does need to modify a data member. I don't know of a generally agreed upon approach, but I 
can bear witness to the problem. In my code, I tend toward leaving off the const. 

 
Ru-Brd  

Ru-Brd  

A Reconsidered Class Declaration 

The previous discussion suggests that the following redeclaration of Abstract_base would seem the more 
appropriate design: 
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class Abstract_base {  
public:  
   virtual ~Abstract_base();  
   virtual void interface() = 0;  
   const char* mumble () const { return _mumble; }  
 
protected:  
   Abstract_base( char *pc = 0 )  
 
   char *_mumble;  
};  
Ru-Brd  

Ru-Brd  

5.1 Object Construction without Inheritance 

Consider the following generic program fragment: 

(1)   Point global;  
(2)  
(3)   Point foobar()  
(4)   {  
(5)      Point local;  
(6)      Point *heap = new Point;  
(7)      *heap = local;  
(8)      // ... stuff ...  
(9)      delete heap;  
(10)     return local;  
(11)  }  

Lines 1, 5, and 6 represent the three varieties of object creation: global, local, and heap memory allocation. 
Line 7 represents the assignment of one class object with another, while line 10 represents the initialization 
of the return value with the local Point object. Line 9 explicitly deletes the heap object. 

The lifetime of an object is a runtime attribute of an object. The local object's lifetime extends from its 
definition at line 5 through line 10. The global object's lifetime extends for the entire program execution. The 
lifetime of an object allocated on the heap extends from the point of its allocation using operator new 
through application of operator delete. 

Here is a first declaration of Point, written as it might be in C. The Standard speaks of this Point declaration 
as Plain Ol' Data. 

typedef struct  
{  
   float x, y, z;  
} Point;  

What happens when this declaration is compiled under C++? Conceptually, a trivial default constructor, trivial 
destructor, trivial copy constructor, and trivial copy assignment operator are internally declared for Point. In 
practice, all that happens is that the compiler has analyzed the declaration and tagged it to be Plain Ol' Data. 

When the compiler encounters the definition 

(1)   Point global;  

then conceptually, the definition of both Point's trivial constructor and destructor are generated and invoked 
(the constructor at program startup and the destructor usually within the system-generated call to exit() 
upon completion of main()). In practice, however, these trivial members are neither defined nor invoked, 
and the program behaves exactly as it would in C. 

Well, with one minor exception. In C, global is treated as a tentative definition because it is without explicit 
initialization. A tentative definition can occur multiple times within the program. Those multiple instances are 
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collapsed by the link editor, and a single instance is placed within the portion of the program data segment 
reserved for uninitialized global objects (for historical reasons, it's called the BSS, an abbreviation of Block 
Started by Symbol, an IBM 704 assembler pseudo-op). 

In C++, tentative definitions are not supported because of the implicit application of class constructors. 
(Admittedly the language could have distinguished between class objects and Plain Ol' Data, but doing so 
seemed an unnecessary complication.) global, therefore, is treated within C++ as a full definition 
(precluding a second or subsequent definition). One difference between C and C++, then, is the relative 
unimportance of the BSS data segment in C++. All global objects within C++ are treated as initialized. 

The local Point object within foobar() on line 5 is similarly neither constructed nor destructed. Of course, 
leaving the local Point object uninitialized is a potential program bug if a first use depends on its being set, 
such as on line 7. The initialization of heap on Line 6 

(6)      Point *heap = new Point;  

is transformed into a call of the library instance of operator new 

Point *heap = __new( sizeof( Point ));  

Again, there is no default constructor applied to the Point object returned by the call to operator new. The 
assignment to this object on the next line would solve this problem if local were properly initialized: 

(7)      *heap = local;  

This assignment should generate a compiler warning of the general form 

warning, line 7: local is used before being initialized.  

Conceptually, this assignment triggers the definition of the trivial copy assignment operator, which is then 
invoked to carry out the assignment. Again, in practice, since the object is Plain Ol' Data, the assignment 
remains a bitwise copy exactly as it is in C. The deletion of heap on Line 9 

(9)      delete heap;  

is transformed into a call of the library instance of operator delete 

__delete( heap );  

Again, conceptually, this triggers the generation of the trivial destructor for Point. But, as we've seen, the 
destructor, in practice, is neither generated nor invoked. Finally, the return of local by value conceptually 
triggers the definition of the trivial copy constructor, which is then invoked, and so on. In practice, the return 
remains a simple bitwise operation of Plain Ol' Data. 

Abstract Data Type 

The second declaration of Point provides full encapsulation of private data behind a public interface but does 
not provide any virtual function interface: 

class Point {  
public:  
   Point( float x = 0.0, float y = 0.0, float z = 0.0 )  
       : _x( x ), _y( y ), _z( z ) {}  
 
   // no copy constructor, copy operator  
   // or destructor defined ...  
 
   // ...  
private:  
   float _x, _y, _z;  
};  
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The size of an encapsulated Point class object remains unchanged: the three contiguous coordinate float 
members. Neither the private nor public access labels nor the member function declarations take up any 
space within the object. 

We do not define either a copy constructor or copy operator for our Point class because the default bitwise 
semantics are sufficient. Nor do we provide a destructor; the default program management of memory is 
sufficient. 

The definition of a global instance 

Point global; // apply Point::Point( 0.0, 0.0, 0.0 );  

now has the default constructor applied to it. Since global is defined at global scope, its initialization needs 
to be deferred until program startup (see Section 6.1 for a full discussion). 

In the special case of initializing a class to all constant values, an explicit initialization list is slightly more 
efficient than the equivalent inline expansion of a constructor, even at local scope (although at local scope, 
this may seem slightly nonintuitive. You'll see some numbers on this in Section 5.4). For example, consider 
the following code fragment: 

void mumble()  
{  
   Point1 local1 = { 1.0, 1.0, 1.0 };  
   Point2 local2;  
 
   // equivalent to an inline expansion  
   // the explicit initialization is slightly faster  
   local2._x = 1.0;  
   local2._y = 1.0;  
   local2._z = 1.0;  
}  

local1's initialization is slightly more efficient than that of local2's. This is because the values within the 
initialization list can be placed within local1's memory during placement of the function's activation record 
upon the program stack. 

There are three drawbacks of an explicit initialization list: 

1. It can be used only if all the class members are public. 

2. It can specify only constant expressions (those able to be evaluated at compile time). 

3. Because it is not applied automatically by the compiler, the likelihood of failure to initialize an object is 
significantly heightened. 

As a result, can the use of an explicit initialization list provide a performance increase significant enough to 
compensate for its software engineering drawbacks? In general, no. In practice, however, it can make a 
difference in certain special cases. For example, perhaps you are hand-building some large data structure, 
such as a color palette, or you are dumping into program text large amounts of constant values, such as the 
control vertices and knot values of a complex geometric model created in a package such as Alias or 
SoftImage. In these cases, an explicit initialization list performs better than an inline constructor, particularly 
for global objects. 

At the compiler level, a possible optimization would be recognition of inline constructors that simply provide a 
member-by-member assignment of constant expressions. The compiler might then extract those values. It 
would treat them the same as those supplied in an explicit initialization list, rather than expanding the 
constructor as a sequence of assignment statements. 

The definition of the local Point object 

{  
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   Point local;  
   // ...  
}  

is now followed by the inline expansion of the default Point constructor: 

{  
   // inline expansion of default constructor  
   Point local;  
   local._x = 0.0; local._y = 0.0; local._z = 0.0;  
   // ...  
}  

The allocation of the Point object on the heap on line 6 

(6)      Point *heap = new Point;  

now includes a conditional invocation of the default Point constructor 

// Pseudo C++ Code  
Point *heap = __new( sizeof( Point ));  
if ( heap != 0 )  
   heap->Point::Point();  

which is then inline expanded. The assignment of the local object to the object pointed to by heap 

(7)      *heap = local;  

remains a simple bitwise copy, as does the return of the local object by value: 

(10)      return local;  

The deletion of the object addressed by heap 

(9)      delete heap;  

does not result in a destructor call, since we did not explicitly provide an instance. 

Conceptually, our Point class has an associated default copy constructor, copy operator, and destructor. 
These, however, are trivial and are not in practice actually generated by the compiler. 

Preparing for Inheritance 

Our third declaration of Point prepares for inheritance and the dynamic resolution of certain operations, in 
this case limited to access of the coordinate member, z: 

class Point  
public:  
   Point( float x = 0.0, float y = 0.0 )  
       : _x( x ), _y( y ) {}  
 
   // no destructor, copy constructor, or  
   // copy operator defined ...  
 
   virtual float z();  
   // ...  
protected:  
   float _x, _y;  
};  

We again do not define a copy constructor, copy operator, or destructor. All our members are stored by value 
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and are therefore well behaved on a program level under the default semantics. (Some people would argue 
that the introduction of a virtual function should always be accompanied by the de-claration of a virtual 
destructor. But doing that would buy us nothing in this case.) 

The introduction of the virtual function triggers the addition of a virtual table pointer within each Point object. 
This provides us with the flexibility of a virtual interface, but at the cost of additional word of storage per 
object. How significant is this? Clearly that depends on the application and general domain. In the 3D 
modeling domain, if you were to represent a complex geometric shape that has 60 NURB surfaces with 512 
control vertices per surface, the 4-byte overhead per Point object would approach 200,000 bytes. This may or
may not be significant. Whether it was would have to be weighed against the practical benefits of 
polymorphism in the design. What you want to avoid is becoming aware of the issue only after the 
implementation is complete. 

In addition to the vptr added within each class object, the introduction of the virtual function causes the 
following compiler-driven augmentations to our Point class: 

The constructor we've defined has code added to it to initialize the virtual table pointer. This code has 
to be added after the invocation of any base class constructors but before execution of any user-
supplied code. For example, here is a possible expansion of our Point constructor:  

// Pseudo C++ Code: internal augmentation  
Point*  
Point::Point( Point *this,  
              float x, float y )  
              :_x(x), _y(y)  
{  
   // set the object's virtual table pointer  
   this->__vptr__Point = __vtbl__Point;  
 
   // expand member initialization list  
   this->_x = x;  
   this->_y = y;  
 
   // return this object ...  
   return this;  
}  

Both a copy constructor and a copy operator need to be synthesized, as their operations are now 
nontrivial. (The implicit de-structor remains trivial and so is not synthesized.) A bitwise operation 
might otherwise result in an invalid setting of the vptr if a Point object is initialized or assigned with a 
derived class object.  

// Pseudo C++ Code:  
// internal synthesis of copy constructor  
inline Point*  
Point::Point( Point *this, const Point &rhs )  
{  
   // set the object's virtual table pointer  
   this->__vptr__Point = __vtbl__Point;  
 
   // `bitblast' contiguous portion of rhs'  
   // coordinates into this object or provide  
   // a member by member assignment ...  
 
   return this;  
}  

The compiler, in an optimization, may copy contiguous chucks of one object into another rather than 
implement a strict memberwise assignment. The Standard requires implementations to defer the actual 
synthesis of these nontrivial members until an actual use is encountered. 

As a convenience, I've reproduced foobar() here: 
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(1)   Point global;  
(2)  
(3)   Point foobar()  
(4)   {  
(5)      Point local;  
(6)      Point *heap = new Point;  
(7)      *heap = local;  
(8)      // ... stuff ...  
(9)      delete heap;  
(10)     return local;  
(11)  }  

The initialization of global on line 1, the initialization of heap on line 6, and the deletion of heap on line 9 
remain exactly the same as for the earlier representation of Point. The memberwise assignment, however, of 
line 7 

*heap = local;  

is likely to trigger the actual synthesize of the copy assignment operator and an inline expansion of its 
invocation, substituting heap for the this pointer and local for the rhs argument. 

The most dramatic impact on our program is the return of local by value on line 10. In the presence of the 
copy constructor, foobar() is likely to be transformed as follows (this is discussed in greater detail in 
Section 2.3): 

// Pseudo C++ code: transformation of foobar()  
// to support copy construction  
 
void foobar( Point &__result )  
{  
   Point local;  
   local.Point::Point( 0.0, 0.0 );  
 
   // heap remains the same ...  
 
   // application of copy constructor  
   __result.Point::Point( local );  
 
   // destruction of local object would go here  
   // had Point defined a destructor:  
   // local.Point::~Point();  
 
   return;  
}  

And if the named return value (NRV) optimization is supported, the function is further transformed as follows:

// Pseudo C++ code: transformation of foobar()  
// to support named return value optimization  
 
void foobar( Point &__result )  
{  
   __result.Point::Point( 0.0, 0.0 );  
 
   // heap remains the same ...  
 
   return;  
}  

In general, if your design includes a number of functions requiring the definition and return of a local class 
object by value, such as arithmetic operations of the form 

T operator+( const T&, const T& )  
{  
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   T result;  
   // ... actual work ...  
   return result;  
};  

then it makes good sense to provide a copy constructor even if the default memberwise semantics are 
sufficient. Its presence triggers the application of the NRV optimization. Moreover, as I showed in the 
previous example, its application removes the need for invoking the copy constructor, since the results are 
being directly computed within the object to be returned. 
Ru-Brd  

Ru-Brd  

5.2 Object Construction under Inheritance 

When we define an object, such as 

T object;  

exactly what happens? If there is a constructor associated with T (either user supplied or synthesized by the 
compiler), it is invoked. That's obvious. What is sometimes less obvious is what the invocation of a 
constructor actually entails. 

Constructors can contain a great deal of hidden program code because the compiler augments every 
constructor to a greater or lesser extent depending on the complexity of T's class hierarchy. The general 
sequence of compiler augmentations is as follows: 

1. The data members initialized in the member initialization list have to be entered within the body of the 
constructor in the order of member declaration. 

2. If a member class object is not present in the member initialization list but has an associated default 
constructor, that default constructor must be invoked. 

3. Prior to that, if there is a virtual table pointer (or pointers) contained within the class object, it (they) 
must be initialized with the address of the appropriate virtual table(s). 

4. Prior to that, all immediate base class constructors must be invoked in the order of base class 
declaration (the order within the member initialization list is not relevant). 

If the base class is listed within the member initialization list, the explicit arguments, if any, 
must be passed. 

If the base class is not listed within the member initialization list, the default constructor (or 
default memberwise copy constructor) must be invoked, if present. 

If the base class is a second or subsequent base class, the this pointer must be adjusted. 

5. Prior to that, all virtual base class constructors must be invoked in a left-to-right, depth-first search of 
the inheritance hierarchy defined by the derived class. 

If the class is listed within the member initialization list, the explicit arguments, if any, must be 
passed. Otherwise, if there is a default constructor associated with the class, it must be 
invoked. 

In addition, the offset of each virtual base class subobject within the class must somehow be 
made accessible at runtime. 

These constructors, however, may be invoked if, and only if, the class object represents the 
"most-derived class." Some mechanism supporting this must be put into place. 

In this section, I consider the augmentations necessary to constructors in order to support the language-
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guaranteed semantics of the class. I again illustrate the discussion with the help of a Point class. (I added a 
copy constructor, copy operator, and virtual destructor in order to illustrate the behavior of subsequent 
containing and derived classes in the presence of these functions.) 

class Point {  
public:  
   Point( float x = 0.0, float y = 0.0 );  
   Point( const Point& );  
   Point& operator=( const Point& );  
 
   virtual             ~Point();  
   virtual float              z(){ return 0.0; }  
// ...  
protected:  
   float _x, _y;  
};  

Before I introduce and step through an inheritance hierarchy rooted in Point, I'll quickly look at the 
declaration and augmentation of a class Line, which is composed of a begin and end point: 

class Line {  
   Point _begin, _end;  
public:  
   Line( float=0.0, float=0.0, float=0.0, float=0.0 );  
   Line( const Point&, const Point& );  
 
   draw();  
   // ...  
};  

Each explicit constructor is augmented to invoke the constructors of its two member class objects. For 
example, the user constructor 

Line::Line( const Point &begin, const Point &end )  
     : _end( end ), _begin( begin )  
{};  

is internally augmented and transformed into 

// Pseudo C++ Code: Line constructor augmentation  
Line*  
Line::Line( Line *this,  
           const Point &begin, const Point &end )  
{  
   this->_begin.Point::Point( begin );  
   this->_end.Point::Point( end );  
   return this;  
};  

Since the Point class declares a copy constructor, a copy operator, and a destructor (virtual in this case), the 
implicit copy constructor, copy operator, and destructor for Line are nontrivial. 

When the programmer writes 

Line a;  

the implicit Line destructor is synthesized. (If Line were derived from Point, the synthesized destructor would 
be virtual. However, because Line contains only Point objects, the synthesized Line destructor is nonvirtual). 
Within it, the destructors for its two member class objects are invoked in the reverse order of their 
construction: 

// Pseudo C++ Code: Line destructor synthesis  
inline void  
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Line::~Line( Line *this )  
{  
   this->_end.Point::~Point();  
   this->_begin.Point::~Point();  
};  

Of course, if the Point destructor is inline, each invocation is expanded at the point of call. Notice that 
although the Point destructor is virtual, its invocation within the containing class destructor is resolved 
statically. 

Similarly, when the programmer writes 

Line b = a;  

the implicit Line copy constructor is synthesized as an inline public member. 

Finally, when the programmer writes 

a = b;  

the implicit copy assignment operator is synthesized as an inline public member. 

While poking around cfront recently, I noticed that when generating the copy operator, it does not condition 
the copy by a guard of the form 

if ( this == &rhs ) return *this;  

As a result, it applies redundant copying for expressions such as 

Line *p1 = &a;  
Line *p2 = &a;  
*p1 = *p2;  

This is not unique to cfront, I discovered; Borland also leaves off a guard, and I suspect this is true of most 
compilers. In the case of a compiler-synthesized copy operator, the duplication is safe but redundant, since 
no deallocation of resources is involved. Failure to check for an assignment to self in a user-supplied copy 
operator is a common pitfall of the beginner programmer; for example, 

// User supplied copy assignment operator  
// forgets to provide a guard against self-copy  
 
String&  
String::operator=( const String &rhs ) {  
   // need guard here before deallocate resources  
   delete [] str;  
   str = new char[ strlen( rhs.str ) + 1 ];  
   ...  
}  

Under the category of good intentions not acted upon, I had many times thought of adding a warning 
message to cfront for the case when, within a copy operator, the operator lacked a guard against self-copy 
but contained a delete operator upon one of its members. I still think a message warning of this would be 
useful to the programmer. 

Virtual Inheritance 

Consider the following virtual derivation from our Point class: 

class Point3d : public virtual Point {  
public:  
   Point3d( float x = 0.0, float y = 0.0, float z = 0.0 )  
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       : Point( x, y ), _z( z ) {}  
   Point3d( const Point3d& rhs )  
       : Point( rhs ), _z( rhs._z ) {}  
   ~Point3d();  
   Point3d& operator=( const Point3d& );  
 
   virtual float z(){ return _z; }  
   // ...  
protected:  
   float _z;  
};  

The conventional constructor augmentation does not work due to the shared nature of the virtual base class: 

// Pseudo C++ Code:  
// Invalid Constructor Augmentation  
Point3d*  
Point3d::Point3d( Point3d *this,  
        float x, float y, float z )  
{  
   this->Point::Point( x, y );  
   this->__vptr__Point3d = __vtbl__Point3d;  
   this->__vptr__Point3d__Point =  
         __vtbl__Point3d__Point;  
   this->_z = rhs._z;  
   return this;  
}  

Do you see what's wrong with this augmentation of the Point3d constructor? 

Consider the following three class derivations: 

class Vertex   : virtual public Point { ... };  
class Vertex3d : public Point3d, public Vertex { ... };  
class PVertex  : public Vertex3d { ... };  

The constructor for Vertex must also invoke the Point class constructor. However, when Point3d and Vertex 
are subobjects of Vertex3d, their invocations of the Point constructor must not occur; rather, Vertex3d, as 
the most-derived class, becomes responsible for initializing Point. In the subsequent PVertex derivation, it, 
not Vertex3d, is responsible for the initialization of the shared Point subobject. 

The traditional strategy for supporting this sort of "now you initialize the virtual base class, now you don't" is 
to introduce an additional argument in the constructor(s) indicating whether the virtual base class constructor
(s) should be invoked. The body of the constructor conditionally tests this argument and either does or does 
not invoke the associated virtual base class constructors. Here is this strategy of Point3d constructor 
augmentation: 

// Psuedo C++ Code:  
// Constructor Augmentation with Virtual Base class  
Point3d*  
Point3d::Point3d( Point3d *this, bool __most_derived,  
        float x, float y, float z )  
{  
   if ( __most_derived != false )  
          this->Point::Point( x, y);  
 
   this->__vptr__Point3d = __vtbl__Point3d;  
   this->__vptr__Point3d__Point =  
         __vtbl__Point3d__Point;  
 
   this->_z = rhs._z;  
   return this;  
}  

Page 123 of 182

22/08/2003file://C:\Documents%20and%20Settings\Mark\Local%20Setting...



Within a subsequently derived class, such as Vertex3d, the invocation of the Point3d and Vertex constructors 
always sets the __most_derived argument to false, thus suppressing the Point constructor invocation 
within both constructors. 

// Psuedo C++ Code:  
// Constructor Augmentation with Virtual Base class  
Vertex3d*  
Vertex3d::Vertex3d( Vertex3d *this, bool __most_derived,  
        float x, float y, float z )  
{  
   if ( __most_derived != false )  
          this->Point::Point( x, y);  
 
   // invoke immediate base classes,  
   // setting __most_derived to false  
 
   this->Point3d::Point3d( false, x, y, z );  
   this->Vertex::Vertex( false, x, y );  
 
   // set vptrs  
   // insert user code  
 
   return this;  
}  

This strategy gets the semantics right. For example, when we define 

Point3d origin;  

the Point3d constructor correctly invokes its Point virtual base class subobject. When we define 

Vertex3d cv;  

the Vertex3d constructor correctly invokes the Point constructor. The Point3d and Vertex constructors do 
everything but that invocation. So, if the behavior is right, then what's wrong? 

A number of us have noticed that the conditions under which the virtual base class constructors are invoked 
is well defined. They are invoked when a complete class object is being defined, such as origin; they are 
not invoked when the object serves as a subobject of an object of a subsequently derived class. 

Leveraging this knowledge, we can generate better-performing constructors at the expense of generating 
more program text. Some newer implementations split each constructor into a complete object and a 
subobject instance. The complete object version unconditionally invokes the virtual base constructors, sets all 
vptrs, and so on. The subobject version does not invoke the virtual base class constructors, may possibly not 
set the vptrs, and so on. (I look at the issue of setting the vptr in the next section.) This splitting of the 
constructor should result in considerable program speed up. Unfortunately, I do not have access to a compiler
that actually does this and so have no numbers to confirm this. (During the Foundation project, however, Rob
Murray, out of frustration I suspect, hand-optimized cfront's C output to elide unnecessary conditional tests 
and the setting of the vptr. He reported a measurable speed up.) 

The Semantics of the vptr Initialization 

When we define a PVertex object, the order of constructor calls is 

Point( x, y );  
Point3d( x, y, z );  
Vertex( x, y, z );  
Vertex3d( x, y, z );  
PVertex( x, y, z );  

Assume each class within its hierarchy defines an instance of a virtual function size() that returns the size 
in bytes of the class. For example, if we were to write 
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PVertex pv;  
Point3d p3d;  
 
Point *pt = &pv;  

the call 

pt->size();  

would return the size of the PVertex class and 

pt = &p3d  
pt->size();  

would return the size of the Point3d class. 

Further assume that each constructor within the class hierarchy contains an invocation of size(). For 
example, 

Point3d::Point3d( float x, float y, float z )  
   : _x( x ), _y( y ), _z( z )  
{  
   if ( spyOn )  
      cerr << "within Point3d::Point3d()"  
           << " size: " << size() << endl;  
}  

When we define our PVertex object, what should the outcome of the five constructor calls look like? Should 
each invocation of size() resolve to PVertex::size() (that's what we're constructing, after all)? Or 
should each invocation resolve to the associated size() instance of the class whose constructor is currently 
executing? 

The language rule is that inside the Point3d constructor, the invocation of size() must resolve to the 
Point3d instance, not the PVertex instance. More generally, within the constructors (and destructor) of a class 
(in this case, our Point3d class), the invocation of a virtual function by the object under construction (in this 
case, our PVertex object) is limited to the virtual functions active within the class (that is, our Point3d class). 
This is necessary because of the class order of constructor invocation: Classes are built from the bottom up 
and then the inside out. As a result, the derived instance is not yet constructed while the base class 
constructor executes. The PVertex object is not a complete PVertex object until the completion of its 
constructor. While the Point3d constructor executes, only its Point3d subobject is yet constructed. 

This means that as each of the PVertex base class constructors are invoked, the compilation system must 
guarantee that the appropriate instance of size() is invoked. How might that be done? 

Were invocations limited to direct calls from within the constructor (or destructor), the solution would be 
reasonably straightforward: Simply resolve each call statically, never invoking the virtual mechanism. Within 
the Point3d constructor, for example, explicitly invoke Point3d::size(). 

What happens, however, if within size() a subsequent virtual function call occurs? In this case, that call too 
must resolve to the Point3d instance. In other cases, however, the call is genuinely virtual and must go 
through the virtual mechanism. That is, somehow we must "sensitize" the virtual mechanism itself to be 
aware of whether the call is originating from within a constructor. 

One way we could do that, I suppose, is to set a flag from within the constructor (or destructor) saying 
essentially, "Hey, no, this time resolve the call statically." We could then generate conditional invocations 
based on the state of the flag. 

This would work, although it feels both inelegant and inefficient—a good example of a hack. We could even 
cover ourselves with a program source comment such as 

// yuck!!! fix the language semantics!  
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This solution feels more like a response to the failure of our first design strategy than a solution to the 
underlying problem, that is, the need to constrain the set of candidate virtual functions to be considered 
during execution of a constructor. 

Consider for a moment what actually determines the virtual function set active for a class: the virtual table. 
How is that virtual table accessed and thus the active set of virtual functions determined? By the address to 
which the vptr is set. So to control the set of active functions for a class, the compilation system need simply 
control the initialization and setting of the vptr. (It is the compiler's responsibility to set the vptr, of course, 
not something the programmer need or should worry about.) 

How should the vptr initialization be handled? Essentially, this depends on when the vptr should be initialized 
within the constructor. There are three choices: 

1. First, before anything else happens 

2. After invocation of the base class constructors but before execution of user-provided code or the 
expansion of members initialized within the member initialization list 

3. Last, after everything else has happened 

The answer is after the invocation of the base class constructors. The other two choices do nothing. If you 
don't believe that, work through the invocation of size() under strategy 1 or 3. Strategy 2 solves the 
problem of constraining the set of candidate virtual functions within the class. If each constructor waits to set 
its object's vptr until after its base class constructors have executed, then the correct instance of the virtual 
function is invoked each time. 

By having each base class constructor set its object's vptr to the virtual table associated with its class, the 
object under construction literally becomes an object of that class for the duration of the constructor. That is, 
a PVertex object in turn becomes a Point object, a Point3d object, a Vertex object, a Vertex3d object, and 
then a PVertex object. Within each base class constructor, the object is indistinguishable from a complete 
object of the constructor's class. For objects, ontogeny recapitulates phylogeny. The general algorithm of 
constructor execution is as follows: 

1. Within the derived class constructor, all virtual base class and then immediate base class constructors 
are invoked. 

2. That done, the object's vptr(s) are initialized to address the associated virtual table(s). 

3. The member initialization list, if present, is expanded within the body of the constructor. This must be 
done after the vptr is set in case a virtual member function is called. 

4. The explicit user-supplied code is executed. 

For example, given the following user-defined PVertex constructor: 

PVertex::PVertex( float x, float y, float z )  
   : _next( 0 ), Vertex3d( x, y, z ),  
     Point( x, y )  
{  
   if ( spyOn )  
      cerr << "within Point3d::Point3d()"  
         << " size: " << size() << endl;  
}  

a likely internal expansion would look something like this: 

// Pseudo C++ Code  
// expansion of PVertex constructor  
PVertex*  
PVertex::PVertex( Pvertex* this,  
         bool __most_derived,  
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         float x, float y, float z )  
{  
   // conditionally invoke the virtual base constructor  
   if ( __most_derived != false )  
      this->Point::Point( x, y );  
   // unconditional invocation of immediate base  
   this->Vertex3d::Vertex3d( x, y, z );  
 
   // initialize associated vptrs  
 
   this->__vptr__PVertex = __vtbl__PVertex;  
   this->__vptr__Point__PVertex =  
          __vtbl__Point__PVertex;  
 
   // explicit user code  
   if ( spyOn )  
      cerr << "within Point3d::Point3d()"  
         << " size: "  
         // invocation through virtual mechanism  
         << (*this->__vptr__PVertex[ 3 ].faddr)(this)  
         << endl;  
 
   // return constructed object  
   return this;  
}  

This resolves our stated problem of constraining the virtual mechanism perfectly. But, is it a perfect solution? 
Suppose our Point constructor is defined as 

Point::Point( float x, float y )  
   : _x( x ), _y( y ){}  

and our Point3d is defined as 

Point3d::Point3d( float x, float y, float z )  
   : Point( x, y ), _z( z ){}  

Further suppose our Vertex and Vertex3d constructors are defined in a similar manner. Do you see how our 
solution is less than perfect even though we've solved our problem perfectly? 

There are two conditions under which the vptr must be set: 

1. When a complete object is being constructed. If we declare a Point object, the Point constructor must 
set its vptr. 

2. When, within the construction of a subobject, a virtual function call is made either directly or indirectly 

If we declare a PVertex object, then because of our latest definitions of its base class constructors, its vptr is 
needlessly being set within each base class constructor. The solution is to split the constructor into a 
complete boject instance and a subobject instance. In the subobject instance, the setting of the vptr is elided 
if possible. 

Given what we know, you should be able to answer the following question: Is it safe to invoke a virtual 
function of the class within its constructor's member initialization list? Physically, it is always safe when the 
function is applied to the initialization of a data member of the class. This is because, as we've seen, the vptr 
is guaranteed to have been set by the compiler prior to the expansion of the member initialization list. It may 
not be semantically safe, however, because the function itself may depend on members that are not yet 
initialized. It is not an idiom I recommend. However, from the point of view of the integrity of the vptr, it is a 
safe operation. 

What about when providing an argument for a base class constructor? Is it still physically safe to invoke a 
virtual function of the class within its constructor's member initialization list? No. The vptr is either not set or 
set to the wrong class. Further, any of the data members of the class that are accessed within the function 
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are guaranteed to not yet be initialized. 
Ru-Brd  

Ru-Brd  

5.3 Object Copy Semantics 

When designing a class, we have three choices regarding the assignment of one class object with another: 

1. Do nothing, thereby allowing for the default behavior. 

2. Provide an explicit copy assignment operator. 

3. Explicitly disallow the assignment of one class object with another. 

Disallowing the copying of one class object with another is accomplished by declaring the copy assignment 
operator private and not providing a definition. (By making it private, we disallow assignment everywhere 
except within member functions and friends of the class. By our not providing a definition, then if a member 
function or friend were to attempt to ef-fect a copy, the program would fail to link. Admittedly, having to 
depend on properties of the linker—that is, on properties outside of the language itself—is not fully 
satisfactory.) 

In this section, I examine the semantics of the copy assignment operator and how they are generally 
modeled. Again, I illustrate the discussion with the help of a Point class: 

class Point {  
public:  
   Point( float x = 0.0, y = 0.0 );  
   //...( no virtual functions  
protected:  
   float _x, _y;  
};  

There is no reason to prohibit the copying of one Point object with another in this implementation. So the 
question is whether the default behavior is sufficient. If all we want to support is the simple assignment of 
one Point object to another, then the default behavior is both sufficient and efficient and there is no reason to 
provide an explicit instance of the copy assignment operator. 

A copy assignment operator is necessary only if the default behavior results in semantics that are either 
unsafe or incorrect. (For a complete discussion of memberwise copy and its potential pitfalls, see [LIPP91c].) 
Is the default memberwise copy behavior unsafe or incorrect for our Point objects? No, the coordinates are 
contained by value, so there are no aliasing or memory leaks that can occur. Moreover, by our providing a 
copy assignment operator, the program may actually run slower. 

If we don't provide a copy assignment operator for our Point class and thus rely on the default memberwise 
copy, does the compiler actually generate an instance? The answer is the same as for a copy constructor: in 
practice, no. Provided bitwise copy semantics hold for the class, the implicit copy assignment operator is 
considered trivial and is not synthesized. 

A class does not exhibit bitwise copy semantics for the default copy assignment operator in the following 
cases (this is covered in detail in Section 2.2): 

1. When the class contains a member object of a class for which a copy assignment operator exists 

2. When the class is derived from a base class for which a copy assignment operator exists 

3. When the class declares one or more virtual functions (we must not copy the vptr address of the right-
hand class object, since it might be a derived class object) 

4. When the class inherits from a virtual base class (this is independent of whether a copy operator exists 
for the base class) 
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The Standard speaks of copy assignment operators' not exhibiting bitwise copy semantics as nontrivial. In 
practice, only nontrivial instances are synthesized. 

For our Point class, then, the assignment 

Point a, b;  
...  
a = b;  

is accomplished as a bitwise copy of Point b into Point a; no copy assignment operator is invoked. 
Semantically and with regard to performance, this is exactly what we want. Note that we still may want to 
provide a copy constructor in order to turn on the named return value (NRV) optimization. The presence of 
the copy constructor should not bully us into providing a copy assignment operator if one is not needed. 

That said, I am now going to introduce a copy assignment operator in order to illustrate the behavior of that 
operator under inheritance: 

inline  
Point&  
Point::operator=( const Point &p )  
{  
   _x = p._x;  
   _y = p._y;  
}  

Now let's derive our Point3d class (note the virtual inheritance): 

class Point3d : virtual public Point {  
public:  
   Point3d( float x = 0.0, y = 0.0, float z = 0.0 );  
   ...  
protected:  
   float _z;  
};  

If we do not define a copy assignment operator for Point3d, the compiler needs to synthesize one based on 
items 2 and 4 above. The synthesized instance might look as follows: 

// Pseudo C++ Code: synthesized copy assignment operator  
inline Point3d&  
Point3d::operator=( Point3d *const this, const Point3d &p )  
{  
   // invoke the base class instance  
   this->Point::operator=( p );  
 
   // memberwise copy the derived class members  
   _z = p._z;  
   return *this;  
}  

One of the nonorthogonal aspects of the copy assignment operator with regard to that of the copy 
constructor is the absence of a member assignment list—that is, a list parallel to that of the member 
initialization list. Thus we cannot write 

// Pseudo C++ Code: not supported feature  
inline Point3d&  
Point3d::operator=( const Point3d &p )  
        : Point( p3d ), z( p3d._z )  
{}  

but must write one of two alternative ways of invoking the Base copy assignment operator, either 
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Point::operator=( p3d );  

or 

( *(Point*)this ) = p3d;  

The absence of this copy assignment list may seem a minor point, but without it, the compiler generally 
cannot suppress the intermediate base class copy operators from being invoked. For example, here is the 
Vertex copy operator, where Vertex is also virtually derived from Point: 

// class Vertex : virtual public Point  
inline Vertex&  
Vertex::operator=( const Vertex &v )  
{  
   this->Point::operator=( v );  
   _next = v._next;  
   return *this;  
}  

Now let's derive Vertex3d from Point3d and Vertex. Here is the Vertex3d copy assignment operator: 

inline Vertex3d&  
Vertex3d::operator=( const Vertex3d &v )  
{  
   this->Point::operator=( v );  
   this->Point3d::operator=( v );  
   this->Vertex::operator=( v );  
...  
}  

How is the compiler going to suppress the user-programmed instances of the Point copy assignment operator 
within the Point3d and Vertex copy assignment operators? The compiler can't duplicate the traditional 
constructor solution of inserting additional arguments. This is because unlike constructors and the destructor, 
taking the address of the copy assignment operator is legal. Thus this is perfectly legitimate code, for 
example, although it perfectly confounds attempts to be smart about the copy assignment operator: 

typedef Point3d& (Point3d::*pmfPoint3d)(const Point3d&);  
 
pmfPoint3d pmf = &Point3d::operator=;  
( x.*pmf)( x );  

We can't reasonably support this, however, and still insert an arbitrary number of arguments to the copy 
assignment operator based on the peculiar characteristics of its inheritance hierarchy. (This has also proved 
problematic in the support for the allocation of arrays of class objects containing virtual base classes. See 
Section 6.2 for a discussion.) 

Alternatively, the compiler might generate split functions for the copy assignment operator to support the 
class as the most derived and as an intermediate base class. The split function solution is reasonably well 
defined if the copy assignment operator is generated by the compiler; it is not well defined if programmed by 
the designer of the class. For example, how does one split something like the following, particularly if 
init_bases() is virtual: 

inline Vertex3d&  
Vertex3d::operator=( const Vertex3d &v )  
{  
   init_bases( v );  
 
   ...  
}  

Actually, the copy assignment operator is ill behaved under virtual inheritance and needs to be carefully 
designed and documented. In practice, many compilers don't even try to get the semantics right. They invoke
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each virtual base instance within each intermediate copy assignment operator, thus causing multiple 
instances of the virtual base class copy assignment operator to be invoked. Cfront does this as well as the 
Edison Design Group's front-end, Borland's 4.5 C++ compiler, and Symantec's latest C++ Compiler under 
Windows. My guess is your compiler does it as well. What does the Standard have to say about this? 

It is unspecified whether subojects representing virtual base classes are assigned more than 
once by the implicitly defined copy assignment operator (Section 12.8). 

A language-based solution would be to provide a "member copy list" extension to the copy assignment 
operator. Short of this, any solution is program-based and therefore somewhat complicated and error prone. 
Admittedly, it is a weakness in the language and something one should always examine carefully in code 
reviews of designs that use virtual base classes. 

One way to ensure the most-derived class effects the virtual base class subobject copy is to place an explicit 
call of that operator last in the derived class instance of the copy assignment operator: 

inline Vertex3d&  
Vertex3d::operator=( const Vertex3d &v )  
{  
   this->Point3d::operator=( v );  
   this->Vertex::operator=( v );  
   // must place this last if your compiler does  
   // not suppress intermediate class invocations  
   this->Point::operator=( v );  
 
   ...  
}  

This doesn't elide the multiple copies of the subobject, but it does guarantee the correct final semantics. 
Alternative solutions require factoring out the virtual subobject copying into a separate function and 
conditionally invoking it depending on the call path. 

I recommend not permitting the copy operation of a virtual base class whenever possible. An even stronger 
recommendation: Do not declare data within any class that serves as a virtual base class. 

 
Ru-Brd  

Ru-Brd  

5.4 Object Efficiency 

In the following set of performance tests, the cost of object construction and copy is measured as the Point3d 
class declaration increases in complexity as Plain Ol' Data, then as an abstract data type (ADT), and then as 
single, multiple, and virtual inheritances are incorporated in turn. The following function is used as the 
primary measure: 

Point3d lots_of_copies( Point3d a, Point3d b )  
{  
      Point3d pC = a;  
 
      pC = b;  // 1  
      b  = a;  // 2  
 
      return pC;  
}  

It contains four memberwise initializations: the two formal arguments, the return value, and the local object 
pC. It also contains two memberwise copies, those of pC and b on the lines labeled //1 and //2, 
respectively. The main() function looks as follows: 

main() {  
      Point3d pA( 1.725, 0.875, 0.478 );  
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      Point3d pB( 0.315, 0.317, 0.838 );  
      Point3d pC;  
      for ( int iters = 0; iters < 10000000; iters++ )  
           pC = lots_of_copies( pA, pB );  
 
      return 0;  
}  

In the first two programs, the representation is that of a struct and a class with public data: 

struct Point3d { float x, y, z; };  
class  Point3d { public: float x, y, z; };  

and the initialization of both pA and pB is through the use of an explicit initialization list: 

Point3d pA = { 1.725, 0.875, 0.478 };  
Point3d pB = { 0.315, 0.317, 0.838 };  

Both of these representations exhibit bitwise copy semantics, so one expects them to execute equivalent best 
times for this set of program tests. The results are as follows 

  Memberwise Initialization and Copy:  
       Public Data Members  
       Bitwise Copy Semantics  
—————————————————-————————————————————————————————————  
                 Optimized         Non-optimized  
CC                  5.05               6.39  
NCC                 5.84               7.22  

The better CC performance is due to an additional six assembler instructions generated in the NCC loop. This 
"overhead" does not reflect any specific C++ semantics or a poorer handling of the code by the NCC front-
end—the intermediate C output of both compilers is largely equivalent. It is simply a quirk of the back-end 
code generator. 

In the next test, the only change is the encapsulation of the data members and the use of inline access 
functions and an inline constructor to initialize each object. The class still exhibits bitwise copy semantics, so 
common sense would tell you that the runtime performance should be the same. Actually, it is slightly off: 

  Memberwise Initialization and Copy:  
  Private Data Members:  
  Inline Access and Inline Construction  
       Bitwise Copy Semantics  
—————————————————-————————————————————————————————————  
 
                 Optimized        Non-optimized  
CC                  5.18               6.52  
NCC                 6.00               7.33  

I had thought that the difference in performance had to do not with the execution of lots_of_copies() but
with the initialization of the class objects within main(). So I modified the struct initialization as follows to 
duplicate the inline expansion of the inline class constructor: 

main() {  
      Point3d pA;  
      pA.x = 1.725;  pA.y =0.875; pA.z = 0.478;  
 
      Point3d pB;  
      pB.x = 0.315; pB.y = 0.317;  pB.z = 0.838;  
 
      // ... rest the same  

and found that times increased for both executions. They now mirrored those for the encapsulated class 
representation: 
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  Memberwise Initialization and Copy:  
  Public Data Members:  
     Individual Member Initialization  
     Bitwise Copy Semantics  
—————————————————-————————————————————————————————————  
 
                 Optimized        Non-optimized  
CC                  5.18               6.52  
NCC                 5.99               7.33  

The initialization of a coordinate member through the inline expansion of the constructor results in a two-
instruction assembler sequence: one to load the constant value within a register and the other to do the 
actual storage of the value: 

# 20 pt3d pA( 1.725, 0.875, 0.478 );  
li.s $f4, 1.7250000238418579e+00  
s.s  $f4, 76($sp)  
# etc.  

The initialization of a coordinate member through the explicit initialization list results in a one-expression 
store because the constant value is "pre-loaded": 

$$7:  
   .float 1.7250000238418579e+00  
   # etc.  

The other difference between the encapsulated and nonencapsulated Point3d declaration is in the semantics 
of 

Point3d pC;  

Under the ADT representation, pC is automatically initialized with the inline expansion of its default 
constructor even though, in this instance, it would be safe to leave it uninitialized. On the one hand, although 
these differences are small indeed, they serve up an interesting caveat to assertions that encapsulation with 
inline support is the exact equivalent of direct data manipulation common in C programs. On the other hand, 
these differences generally are not significant and provide no reason for dismissing the software engineering 
benefits of data encapsulation. They are something to keep in mind for special-case critical code areas. 

In the next test, I separated the Point3d representation into a concrete three-level single inheritance 
hierarchy of the form 

class Point1d {}; // _x  
class Point2d : public Point1d {}; // _y  
class Point3d : public Point2d {}; // _z  

without introducing any virtual functions. Since the Point3d class still exhibits bitwise copy semantics, the 
addition of single inheritance should not affect the cost of memberwise object initialization or copy. This is 
borne out by the results: 

  Memberwise Initialization and Copy:  
  Single Inheritance:  
    Protected Members: Inline Access  
    Bitwise Copy Semantics  
—————————————————-————————————————————————————————————  
 
                  Optimized        Non-optimized  
CC                   5.18               6.52  
NCC                  6.26               7.33  

The following multiple inheritance relationship is admittedly contrived. Still, in terms of its member 
distribution, it does the job, at least in terms of providing us with a test :-) . 
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class Point1d {}; // _x  
class Point2d {}; // _y  
class Point3d  
   : public Point1d, public Point2d {}; // _z  

Since the Point3d class continues to exhibit bitwise copy semantics, the addition of multiple inheritance 
should not add to the cost of either memberwise object initialization or copy. This proved to be the case 
except for the optimized CC version, which surprisingly ran slightly better: 

  Memberwise Initialization and Copy:  
  Multiple Inheritance:  
    Protected Members: Inline Access  
    Bitwise Copy Semantics  
—————————————————-————————————————————————————————————  
 
                  Optimized       Non-optimized  
CC                   5.06              6.52  
NCC                  6.26              7.33  

In all the tests so far, the differences in all these versions interestingly enough revolves around the cost of 
initializing the three local objects rather than the expense of the memberwise initialization and copy. These 
operations were carried out uniformly, since all these representations so far support bitwise copy semantics. 
The introduction of virtual inheritance, however, changes all that. The following one-level virtual inheritance 
hierarchy: 

class Point1d { ... };  
class Point2d : public virtual Point1d { ... };  
class Point3d : public Point2d { ... };  

effectively disallows bitwise copy semantics for the class (the first level of virtual inheritance effectively 
disallows it; the second level merely compounds it). Synthesized inline instances of the copy constructor and 
copy assignment operator are generated and are now applied. This result is a significant increase in 
performance cost: 

  Memberwise Initialization and Copy:  
  Virtual Inheritance: One Level  
    Synthesized Inline Copy Constructor  
    Synthesized Inline Copy Operator  
—————————————————-————————————————————————————————————  
 
                  Optimized       Non-optimized  
CC                   15.59             26.45  
NCC                  17.29             23.93  

To understand this number better, I then stepped back through the previous representations, beginning with 
the encapsulated class declaration and added a virtual function. Recall that this disallows bitwise copy 
semantics. Synthesized inline instances of the copy constructor and copy assignment operator are now 
generated and applied. The performance increase was not nearly as pronounced but still is about 40—50% 
greater than bitwise copy support. If the functions were user-supplied non-inline instances, the cost would be 
still greater: 

  Memberwise Initialization and Copy:  
  Abstract Data Type: Virtual Function  
    Synthesized Inline Copy Constructor  
    Synthesized Inline Copy Operator  
—————————————————-————————————————————————————————————  
 
                  Optimized       Non-optimized  
CC                   8.34              9.94  
NCC                  7.67              13.05  

Following are the times for the other representations with bitwise copy semantics replaced with an inline 
synthesized memberwise copy constructor and copy assignment operator. These times reflect an increased 
default cost of object construction and copy as the complexity of the inheritance hierarchy increases. 
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     Memberwise Initialization and Copy:  
       Synthesized Inline Copy Constructor  
       Synthesized Inline Copy Operator  
   —————————————————-————————————————————————————————————  
 
                     Optimized       Non-optimized  
Single Inheritance  
   CC                   12.69             17.47  
   NCC                  10.35             17.74  
Multiple Inheritance  
   CC                   14.91             21.51  
   NCC                  12.39             20.39  
 
Virtual Inheritance: Two Levels  
 
   CC                   19.90             29.73  
   NCC                  19.31             26.80  

Ru-Brd  

Ru-Brd  

5.5 Semantics of Destruction 

If a destructor is not defined by a class, the compiler synthesizes one only if the class contains either a 
member or base class with a destructor. Otherwise, the destructor is considered to be trivial and is therefore 
neither synthesized nor invoked in practice. Our Point class, for example, by default does not have a 
destructor synthesized for it, even though it contains a virtual function: 

class Point {  
public:  
   Point( float x = 0.0, float y = 0.0 );  
   Point( const Point& );  
 
   virtual float z();  
 
   // ...  
private:  
   float _x, _y;  
};  

Similarly, were we to compose a Line class of two Point objects, 

class Line {  
public:  
   Line( const Point&, const Point& );  
   // ...  
 
   virtual draw();  
   // ...  
protected:  
   Point _begin, _end;  
};  

Line would not have a destructor synthesized for it because Point is without a destructor. 

Also, when we derive Point3d from Point—even if the derivation is virtual—if we do not declare a destructor, 
the compiler in practice has no need to synthesize one. 

With both the Point and Point3d classes, a destructor is unnecessary, so providing one is inefficient. You 
should resist what I call the primal urge toward symmetry: You've defined a constructor, so it just feels right 
to provide a destructor as well. In practice, you should provide a destructor because it is needed, not because
it "feels" right, or, well, because you're not sure if you need one. 

To determine if a class needs a program level destructor (or constructor, for that matter), consider the case 
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where the lifetime of a class object terminates (or begins). What, if anything, needs to be done to guarantee 
that object's integrity? This is preferably what you need to program (or else the user of your class has to). 
This is what should go into the destructor (or constructor). For example, given 

{  
   Point pt;  
   Point *p = new Point3d;  
   foo( &pt, p );  
   ...  
   delete p;  
}  

we see that both pt and p must be initialized to some coordinate values before being used as arguments to 
foo(). A constructor is necessary because otherwise the user is required to explicitly provide the coordinate 
values. Generally, the user cannot examine the state of a local or heap variable to determine whether it has 
been initialized. It's incorrect to consider the constructors as program overhead because their work otherwise 
still is required. Without them, use of the abstraction is more error prone. 

What about when we explicitly delete p? Is any programming necessary? Would you write, prior to applying 
the delete operator, 

p->x( 0 ); p->y( 0 );  

No, of course not. There is no reason to reset the coordinate values prior to deleting the object. Nor are there 
any resources to reclaim. There is no user level programming required prior to the termination of the 
lifetimes of both pt and p; therefore, there is no need for a destructor. 

Consider our Vertex class, however. It maintains a list of adjacent vertices, and having the list of adjacent 
vertices traversed and deleted in turn on the termination of a vertex object (may) makes sense. If this (or 
some other semantics) is desired, this is the program-level work of the Vertex destructor. 

When we derive Vertex3d from both Point3d and Vertex, if we don't provide an explicit Vertex3d destructor, 
then we still require the Vertex destructor to be invoked upon termination of a Vertex3d object. Thus the 
compiler needs to synthesize a Vertex3d destructor whose only work will be to invoke the Vertex destructor. 
If we provide a Vertex3d destructor, the compiler augments it to invoke the Vertex destructor after the user-
supplied code is executed. A user-defined destructor is augmented in much the same way as are the 
constructors, except in reverse order: 

1. If the object contains a vptr, it is reset to the virtual table associated with the class. 

2. The body of the destructor is then executed; that is, the vptr is reset prior to evaluating the user-
supplied code. 

3. If the class has member class objects with destructors, these are invoked in the reverse order of their 
declaration. 

4. If there are any immediate nonvirtual base classes with destructors, these are invoked in the reverse 
order of their declaration. 

5. If there are any virtual base classes with destructors and this class represents the most-derived class, 
these are invoked in the reverse order of their original construction. 

As with constructors, current thinking on the best implementation strategy for the destructor is to maintain 
two destructor instances: 

1. A complete object instance that always sets the vptr(s) and invokes the virtual base class destructors 

2. A base class subobject instance that never invokes the virtual base class destructors and sets the vptr
(s) only if a virtual function may be invoked from within the body of the destructor 

An object's lifetime ends with the beginning of its destructor's execution. As each base class destructor is 
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evoked in turn, the derived object in effect becomes a complete object of that type. A PVertex object, for 
example, becomes in turn a Vertex3d object, a Vertex object, a Point3d object, and then a Point object before
its actual storage is reclaimed. Where member functions are invoked within the destructor, this object 
metamorphosis is effected through the resetting of the vptr within each destructor before user code is 
executed. The actual semantics of applying destructors within the program are examined in Chapter 6. 

 
Ru-Brd  

Ru-Brd  

Chapter 6. Runtime Semantics 

Imagine we have the apparently simple expression 

if ( yy == xx.getValue() ) ...  

where xx and yy are defined as 

X xx;  
Y yy;  

class Y is defined as 

class Y {  
public:  
   Y();  
   ~Y();  
   operator==( const Y& ) const;  
   // ...  
};  

and class X is defined as 

class X {  
public:  
   X();  
   ~X();  
   operator Y() const;  
   X getValue();  
   // ...  
};  

Simple stuff, right? Okay, let's look at how the expression is handled. 

First, we determine the actual instance of the equality operator that is being referenced. In this case, this 
resolves to the overloaded Y member instance. This is the first transformation of our expression: 

// resolution of intended operator  
if ( yy.operator==( xx.getValue() ))  

Y's equality operator requires an argument of type Y. getValue(), however, returns an object of type X. 
Either there is a way to transform an object of class X into a Y object or the expression is in error. In this 
case, X provides a conversion operator that turns an X object into a Y object. This needs to be applied to the 
return value of getValue(). Here is the second transformation of our expression: 

// conversion of getValue()'s return value  
if ( yy.operator==( xx.getValue().operator Y() ))  

All that's happened so far is that the compiler has augmented our program text with the implicit class 
semantics of our expression. However, we could have explicitly written the expression in this form if we 
wanted. (No, I am not recommending this. However, it does make the compilation a tad swifter!) 
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Although the program text is semantically correct, it is not yet instructionally correct. Next we must generate 
temporaries to hold the return values of our function calls: 

Generate a temporary of class X to hold the return value of getValue():  

X temp1 = xx.getValue();  

Generate a temporary of class Y to hold the return value of operator Y():  

Y temp2 = temp1.operator Y();  

Generate a temporary of type int to hold the return value of the equality operator:  

int temp3 = yy.operator==( temp2 );  

Finally, the language requires that we apply the appropriate destructor to each class object temporary. This 
results in a code transformation of our expression of the following general form: 

// Pseudo C++ code  
// transformation of conditional expression:  
// if ( yy == xx.getValue() ) ...  
{  
   X temp1 = xx.getValue();  
   Y temp2 = temp1.operator Y();  
   int temp3 = yy.operator==( temp2 );  
 
   if ( temp3 ) ...  
 
   temp2.Y::~Y();  
   temp1.X::~X();  
}  

Wow, that's quite a lot of stuff. This is one of the hard things about C++: the difficulty of knowing the 
complexity of an expression simply by inspecting the source code. In this chapter, I look at some of the 
transformations that occur at runtime. I return to the issue of temporary generation in detail in Section 6.3. 

Ru-Brd  

Ru-Brd  

6.1 Object Construction and Destruction 

In general, constructor and destructor insertion is as you would expect: 

// Pseudo C++ Code  
{  
   Point point;  
   // point.Point::Point() generally inserted here  
   ...  
   // point.Point::~Point() generally inserted here  
}  

It gets slightly more confusing when there are multiple exits from a block or function. The destructor must be 
placed at each exit point at which the object is "alive"; for example, 

{  
   Point point;  
   // constructor goes here ...  
   switch( int( point.x() )) {  
      case -1:  
         // mumble;  
         // destructor goes here  
         return;  
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      case 0:  
         // mumble;  
         // destructor goes here  
         return;  
      case 1:  
         // mumble;  
         // destructor goes here  
         return;  
      default:  
         // mumble;  
         // destructor goes here  
         return;  
   }  
 
   // destructor goes here  
}  

In this example, the destructor for point must be generated prior to the return statement at the four exit 
points within the switch statement. It is also likely to be generated just prior to the block's closing brace, 
although an analysis of the block reveals the program could never fall past the switch statement to reach it. 

Similarly, the presence of a goto statement may require multiple destructor invocations. For example, in this 
code fragment 

{  
   if ( cache )  
      // check cache; if match, return 1  
 
   Point xx;  
   // constructor goes here  
 
   while ( cvs.iter( xx ))  
      if ( xx == value )  
         goto found;  
 
   // destructor goes here  
   return 0;  
 
found:  
   // cache item  
   // destructor goes here  
   return 1;  
}  

Destructor invocations must be placed prior to the last two return statements. The destructor does not need 
to be invoked prior to the initial return because, of course, the object has not yet been defined. 

In general, place an object as close as possible to the code segment actually using it. Doing this can save you 
unnecessary object creation and destruction, as would be the case, for example, if we had defined our Point 
object prior to checking our cache. This may seem self-evident, but many Pascal and C programmers using 
C++ still place all their objects at the beginning of a function or local block. 

Global Objects 

If we have the following program fragment: 

Matrix identity;  
 
main()  
{  
   // identity must be initialized by this point!  
   Matrix m1 = identity;  
   ...  
   return 0;  
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}  

the language guarantees that identity is constructed prior to the first user statement of main() and 
destructed following the last statement of main(). A global object such as identity with an associated 
constructor and destructor is said to require both static initialization and deallocation. 

All globally visible objects in C++ are placed within the program data segment. If an explicit initial value is 
specified, the object is initialized with that value; otherwise, the memory associated with the object is 
initialized to 0. Thus in this code fragment: 

int v1 = 1024;  
int v2;  

both v1 and v2 are allocated within the program's data segment—v1 with an initial value of 1024 and v2 
with 0. (This differs from C where v2 is con-sidered a tentative definition.) In C, a global object can be 
initialized only by a constant expression, that is, one that can be evaluated at compile time. A constructor, of 
course, is not a constant expression. Although the class object can be placed within the data segment during 
compilation with its memory zeroed out, its constructor cannot be applied until program startup. The need to 
evaluate an initialization expression for an object stored within the program's data segment is what is meant 
by an object's requiring static initialization. 

When cfront was the only C++ implementation and portability across machines was more important than 
efficiency, a portable but costly method of static initialization (and deallocation) was provided, affectionately 
called munch. cfront was constrained in that its solution had to work on every UNIX platform—from a Cray 
through the VAX and Sun to the UNIX PC briefly put out by AT&T. It could make no assumptions either about 
the associated link editor or object-file format under which it might be running. Because of this constraint, 
the following munch strategy emerged: 

1. Within each file that requires static initialization, generate an __sti() function containing the 
necessary constructor invocations or inline expansions. identity, for example, would cause the 
following __sti() function to be generated within the file matrix.c:  

__sti__matrix_c__identity() {  
   // Pseudo C++ Code  
   identity.Matrix::Matrix();  
}  

where __matrix_c is an encoding of the file name and __identity represents the first nonstatic 
object defined within the file. Appending these two names to __sti provided a unique identifier within 
the executable. (Andy Koenig and Bjarne worked out this "fake static" encoding scheme in response to 
name-clash agonies reported by Jim Coplien.) 

2. Similarly, within each file that requires a static deallocation, generate an __std() function containing 
the necessary destructor invocations or inline expansions. In our example, an __std() function is 
generated to invoke the Matrix destructor on identity. 

3. Provide a set of runtime library munch functions: a _main() function to invoke all the __sti() 
functions within the executable and an exit() function to analogously invoke all the __std() 
functions. 

cfront inserted a _main()call as the new first statement within main(). The exit() function rather than the
C library exit() function was linked in by cfront's CC command by placing the C++ standard library first on 
the command line. (In general this worked, but one still had to cross one's fingers and murmur an incantation
when porting cfront to each new platform. For example, the HP workstation compilation system initially 
refused to pull in the munch exit() routine for reasons I've thankfully forgotten but which were quite 
desperate at the time. The desperation came from having a user discover that his or her static destructors 
were not getting called.) 

The last issue to resolve was how to collect the associated __sti() and __std() functions within the object 
files of the executable. Remember, it had to be portable, although that portability then was limited to 
machines running UNIX. Think for a moment how you might solve the problem. It's not a technically 
challenging issue, but at the time the successful distribution of cfront (and therefore of C++) depended on it. 
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Our solution was to use the nm command. (nm dumps the object file symbol table entries.) An executable 
was generated from the .o files. nm was then run on the resulting executable. Its output was piped into the 
munch program. (I think Rob Murray wrote munch, but nobody any longer claims to remember.) munch 
munched the symbol table names, looking for names that began with __sti or __std. (Yes, periodically to 
amuse ourselves we would begin a function with __sti such as __sti_ha_fooled_you). It then added the 
function names to a jump table of __sti() and __std() functions. Next, it wrote the tables into a small 
program text file. Then, odd as it may sound, the CC command was reinvoked to compile the file containing 
the generated tables. The entire executable was then relinked. _main() and exit() traversed the 
respective tables invoking each entry in turn. 

This got the job done, but gosh, it sure felt like a long distance from computer science. With Release 1.0, a 
patch version for System V was implemented as a fast alternative to munch (I think Jerry Schwarz 
implemented it). patch presumed the executable was in System V COFF (Common Object File Format). It 
examined the executable and then found and chained together file specific __link nodes that contained a 
pointer to the __sti() and __std() functions. Next, it rooted the list to a global __head object defined 
within the new patch runtime library. The patch library included alternative implementations of _main() 
and exit()that traversed the linked list rooted by __head. (The typical porting pitfall was to compile cfront 
to generate patch output while linking in the munch library. I recall this bit Steve Johnson in his port of 
cfront to a Sun workstation after he left Bell Labs.) Eventually, alternative patch libraries for Sun, BSD, and 
ELF were donated by the user community and incorporated into the various cfront releases. 

Once platform-specific C++ compilers began to appear, a hugely more efficient approach became possible by 
extending the link editor and object file formats to directly support static initialization and deallocation. For 
example, the System V Executable and Linking Format (ELF) was extended to provide .init and .fini 
sections that contain information on the objects requiring, respectively, static initialization and deallocation. 
Implementation-specific startup routines (usually named something like crt0.o) complete the platform-
specific support for static initialization and deallocation. 

Prior to Release 2.0, static initialization of nonclass objects was not supported—that is, the C language 
constraint was retained. So, for example, the following definitions were each flagged as invalid initializations: 

extern int i;  
 
// all require static initialization  
// illegal in C and C++ prior to Release 2.0  
 
int j = i;  
int *pi = new int( i );  
double sal = compute_sal( get_employee( i ) );  

The addition of support for static initialization of nonclass objects in part was a side effect of supporting 
virtual base classes. How did virtual base classes become involved in the issue? The access of a virtual base 
class subobject within a derived class pointer or reference is a nonconstant expression requiring evaluation at 
runtime. For example, whereas the following addresses are known at compile time: 

// constant expression initializations  
Vertex3d *pv = new Pvertex;  
Point3d *p3d = pv;  

the location of the virtual base class Point subobject fluctuates with each subsequently derived class and 
therefore cannot be set during compilation. The initialization 

// Point is a virtual base class of Point3d  
// initialization of pt requires  
// some form of runtime evaluation.  
Point *pt = p3d;  

requires the compiler to provide internal extensions to the support of class object static initialization to at 
least cover pointers and references of class objects; for example, 

// Initial support of virtual base class conversion  
// requires non-constant initialization support  
Point *pt = p3d->vbcPoint;  
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There is not much distance to travel to provide the support necessary to cover all nonclass objects. 

There are a number of drawbacks to using statically initialized objects. For example, if exception handling is 
supported, these objects cannot be placed within try blocks. This can be particularly unsatisfactory with 
statically invoked constructors because any throw will by necessity trigger the default terminate() function 
within the exception handling library. Another drawback is the complexity involved in controlling order 
dependency of objects that require static initialization across modules. (See [SCHWARZ89] for the first 
discussion of this problem and the introduction of what are now called Schwarz counters. For a 
comprehensive discussion of the issue, see [CARROLL95].) I recommend your not using global objects that 
require static initialization. Actually, I recommend your not using global objects at all (although this 
recommendation seems to meet with nearly universal dismissal, particularly from C programmers). 

Local Static Objects 

Say we have the following fragment code: 

const Matrix&  
identity() {  
   static Matrix mat_identity;  
   // ...  
   return mat_identity;  
}  

What are the guaranteed semantics of the local static class object? 

mat_identity must have its constructor applied only once, although the function may be invoked 
multiple times. 

mat_identity must have its destructor applied only once, although again the function may be 
invoked multiple times. 

One implementation strategy is to unconditionally construct the object at program startup. However, this 
results in the initialization of all local static class objects at program startup regardless of whether their 
associated functions are ever used. Rather, it's better to construct mat_identity only when identity() is 
first invoked (this is now required by Standard C++). How can we do that? 

Here's how we did it in cfront. First, a temporary was introduced to guard mat_identity's initialization. On 
the first pass through identity(), the temporary evaluated as false. Then the constructor was invoked, and
the temporary was set to true. This solved the construction problem. On the reverse end, the destructor 
needed to be conditionally applied to mat_identity, but only if mat_identity had been constructed. 
Determining whether it had was simple: If the guard was true, it had been constructed. The difficulty was 
that because cfront generated C code, mat_identity was still local to the function and I could not C-legally 
access it within the static deallocation function. "Oh, bother," as Winnie the Pooh would say. The solution, 
oddly enough, was to do exactly what is anathema in a block-structured language: I took the local object's 
address! (Of course, since the object was static, its address in the downstream component would be 
transferred to the global program data segment.) In any case, here is cfront's output (slightly prettified): 

// generated temporary static object guard  
static struct Matrix *__0__F3 = 0 ;  
 
// the C analog to a reference is a pointer  
// identity()'s name is mangled based on signature  
 
struct Matrix*  
identity__Fv ()  
{  
   // the __1 reflects the lexical level  
   // this permitted support for code such as  
   // int val;  
   // int f() { int val;  
   //           return val + ::val; }  
   // where the last line becomes  
   //    ....return __1val + val;  
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   static struct Matrix __1mat_identity ;  
   // if the guard is set, do nothing, else  
   // (a) invoke the constructor: __ct__6MatrixFv  
   // (b) set the guard to address the object  
   __0__F3  
      ? 0  
      :(__ct__1MatrixFv ( & __1mat_identity ),  
       (__0__F3 = (&__1mat_identity)));  
   ...  
}  

Finally, the destructor needed to be conditionally invoked within the static deallocation function associated 
with the text program file, in this case stat_0.c: 

char __std__stat_0_c_j ()  
{  
   __0__F3  
      ? __dt__6MatrixFv( __0__F3 , 2)  
      : 0 ;  
   ...  
}  

Bear in mind that the use of the pointer is peculiar to cfront; the conditional destruction, however, is required 
under all implementations. (As I write this, the Standards committee seems likely to change the semantics of 
destruction for local static class objects. The new rule requires that the static local class objects in the 
compilation unit be destroyed in reverse order of construction. Since these objects are constructed on 
demand (as each function is first entered), neither the set nor order of these constructed objects can be 
predicted during compilation. Support for this rule, then, is likely to require keeping a runtime list of the 
static class objects that are created.) 

Arrays of Objects 

Say we have the following array definition: 

Point knots[ 10 ];  

What needs to be done? If Point defines neither a constructor nor a destructor, then we need do no more 
than what is done for an array of built-in types, that is, allocate memory sufficient to store ten contiguous 
elements of type Point. 

Point, however, does define a default constructor, so it must be applied to each of the elements in turn. In 
general, this is accomplished through one or more runtime library functions. In cfront, we used one instance 
of a function we named vec_new() to support creation and initialization of arrays of class objects. More 
recent implementations, including Borland, Microsoft, and Sun, provide two instances—one to handle classes 
without virtual base classes, one to handle classes containing virtual base classes, the latter usually named 
vec_vnew(). Its signature is generally the following, although there are variants across implementations: 

void*  
vec_new(  
   void *array,      // address of start of array  
   size_t elem_size, // size of each class object  
   int elem_count,   // number of elements in array  
   void (*constructor)( void* ),  
   void (*destructor)( void*, char )  
}  

where constructor and destructor are pointers to the default constructor and destructor, respectively, of
the class. array holds either the address of the named array (knots, in the example) or 0. If 0, then the 
array is being dynamically allocated on the heap through the application of operator new. (Sun has 
separated the handling of named and dynamically allocated arrays of class objects into two separate library 
functions—_vector_new2 and _vector_con—each of which also has a virtual base class instance.) 
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The elem_size argument indicates the number of elements within the array. (I return to this in Section 6.2, 
where I discuss the operators new and delete.) Within vec_new(), the constructor is applied to the 
elem_count elements in turn. The destructor is necessary in implementations that support exception 
handling (it must be applied in the event the constructor being applied throws an exception). Here is a likely 
compiler invocation of vec_new() for our array of ten Point elements: 

Point knots[ 10 ];  
vec_new( &knots, sizeof( Point ), 10, &Point::Point, 0 ); 

If Point also defined a destructor, it would need to be applied to each of the elements in turn upon the 
termination of knots's lifetime. Not surpris-ingly, this is accomplished through an analogous vec_delete() 
(or vec_vdelete() for classes with virtual base classes) runtime library functions. (Sun separates out 
handling the deallocation of named versus dynamically allocated arrays.) Its signature is generally the 
following: 

void*  
vec_delete(  
   void *array,      // address of start of array  
   size_t elem_size, // size of each class object  
   int elem_count,   // number of elements in array  
   void (*destructor)( void*, char )  
}  

although some implementations add an additional argument carrying optional values to conditionally direct 
the logic of vec_delete(). (The proliferation of separate specialized functions is the alternative to this 
additional argument.) Within vec_delete(), the destructor is applied to the elem_count elements in turn. 

What if the programmer provides one or more explicit initial values for an array of class objects, such as the 
following: 

Point knots[ 10 ] = {  
   Point(),  
   Point( 1.0, 1.0, 0.5 ),  
   -1.0  
};  

For those elements explicitly provided with an initial value, the use of vec_new() is unnecessary. For the 
remaining uninitialized elements, vec_new() is applied the same as for an array of class elements without 
an explicit initialization list. The previous definition is likely to be translated as follows: 

Point knots[ 10 ];  
 
// Pseudo C++ Code  
 
// initialize the first 3 with explicit invocations  
Point::Point( &knots[0]);  
Point::Point( &knots[1], 1.0, 1.0, 0.5 );  
Point::Point( &knots[2], -1.0, 0.0, 0.0 );  
 
// initialize last 7 with vec_new ...  
vec_new( &knots+3, sizeof( Point ), 7, &Point::Point, 0 );  

Default Constructors and Arrays 

At the programmer level, taking the address of a constructor is not permitted. Of course, this is exactly what 
the compiler does in its support of vec_new(). Invoking the constructor through a pointer, however, inhibits 
access of default argument values. This has always resulted in less that first-class handling of the 
initialization of an array of class objects. 

For example, prior to cfront's Release 2.0, declaring an array of class objects meant the class had to declare 
either no constructors or a default constructor taking no arguments. A constructor taking one or more default 
arguments was not permitted. This was certainly nonintuitive and led to the following blunder. Here is the 
declaration for the complex library of Release 1.0. Do you see what's wrong with it? 
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class complex {  
   complex(double=0.0, double=0.0);  
   ...  
};  

Under the language rules then current, a user of the complex library as we released it could not declare an 
array of complex class objects. Obviously, we had ourselves tripped over a language pitfall. For Release 1.1, 
we fixed the class library. For Release 2.0, we fixed the language. 

Again, consider for a moment how you might implement support for 

complex::complex(double=0.0, double=0.0);  

when the programmer writes 

complex c_array[ 10 ];  

and the compiler eventually needs to invoke 

vec_new( &c_array, sizeof( complex ), 10,  
         &complex::complex, 0 );  

How are the default arguments made available to vec_new()? 

Obviously, there are several possible implementations. We elected within cfront to generate an internal stub 
constructor that takes no arguments. Within the body, the user-supplied constructor is invoked, with the 
default arguments made explicit. (Because the constructor's address is taken, it could not be made inline.) 

// internally generated stub constructor  
// to support array construction  
complex::complex()  
{  
   complex( 0.0, 0.0 );  
}  

Internally, the compiler itself once again violates an explicit language rule: The class actually supports two 
constructors requiring no arguments. Of course, the stub instance is generated and used only if an array of 
class objects is actually created. 

Ru-Brd  

Ru-Brd  

6.2 Operators new and delete 

Although a use of operator new may seem to be a single operation, such as 

int *pi = new int( 5 );  

it is actually accomplished as two discrete steps: 

1. The allocation of the requested memory through invocation of the appropriate operator new instance, 
passing it the size of the object:  

// invoke library instance of operator new  
int *pi = __new ( sizeof( int ));  

2. The initialization of the allocated object:  

*pi = 5;  
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Further, the initialization is performed only if the allocation of the object by operator new succeeds: 

// discrete steps of operator new  
// given:  int *pi = new int( 5 );  
 
// rewrite declaration  
int *pi;  
 
if ( pi = __new( sizeof( int )))  
    *pi = 5;  

Operator delete is handled similarly. When the programmer writes 

delete pi;  

the language requires that operator delete not be applied if pi should be set to 0. Thus the compiler must 
construct a guard around the call: 

if ( pi != 0 )  
   __delete( pi );  

Note that pi is not automatically reset to 0 and a subsequent dereference, such as 

// oops: ill-defined but not illegal  
if ( pi && *pi == 5 ) ...  

although ill-defined, may or may not evaluate as true. This is because an actual alteration or reuse of the 
storage that pi addresses may or may not have occurred. 

The lifetime of the object addressed by pi ends with the application of delete. So any subsequent attempt to 
refer to that object through pi is no longer well defined and generally is considered bad programming. 
However, the use of pi as a pointer to an address in storage is still well defined, although of limited use; for 
example, 

// ok: still addresses valid storage, even if  
// the object stored there is no longer valid  
if ( pi == sentinel ) ...  

The distinction here is between the use of the pointer pi and the use of the object pi addressed and which 
has now had its lifetime ended. Although the object at that address is no longer valid, the address itself refers
to valid program storage. pi, therefore, can continue to be used, but only in a limited way, much the same 
as if it were a void* pointer. 

The allocation of a class object with an associated constructor is handled similarly. For example, 

Point3d *origin = new Point3d;  

is transformed into 

Point3d *origin;  
 
//Pseudo C++ code  
if ( origin = __new( sizeof( Point3d )))  
     origin = Point3d::Point3d( origin );  

If exception handling is implemented, the transformation becomes somewhat more complicated: 

// Pseudo 3.C++ code  
 
if ( origin = __new( sizeof( Point3d ))) {  
   try {  
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     origin = Point3d::Point3d( origin );  
   }  
   catch( ... ) {  
     // invoke delete lib function to  
     // free memory allocated by new ...  
     __delete( origin );  
 
     // propagate original exception upward  
     throw;  
   }  
}  

Here, if the constructor of the object allocated using operator new throws an exception, the memory 
allocated is released. Then the exception is rethrown. 

The application of the destructor is similar. The expression 

delete origin;  

becomes 

if ( origin != 0 ) {  
     // Pseudo C++ code  
     Point3d::~Point3d( origin );  
     __delete( origin );  
}  

Under exception handling, the destructor would be placed around a try block. The exception handler would 
invoke the delete operator and then rethrow the exception. 

The general library implementation of operator new is relatively straightforward, although there are two 
subtleties worth examining. (Note: The following version does not account for exception handling.) 

extern void*  
operator new( size_t size )  
{  
   if ( size == 0 )  
        size = 1;  
 
   void *last_alloc;  
   while ( !( last_alloc = malloc( size )))  
   {  
      if ( _new_handler )  
         ( *_new_handler )();  
      else return 0;  
   }  
 
   return last_alloc;  
}  

Although it is legal to write 

new T[ 0 ];  

the language requires that each invocation of operator new return a unique pointer. The conventional way of 
solving this is to return a pointer to a default 1-byte memory chunk (this is why size is set to 1). A second 
interesting element of the implementation is the need to allow the user-supplied _new_handler(), if 
present, to possibly free up memory. This is the reason for the loop each time _new_handler() is actually 
invoked. 

Operator new in practice has always been implemented in terms of the standard C malloc(), although 
there is no requirement to do so (and therefore one should not presume it will always be done). Similarly, 
operator delete has, in practice, always been implemented in terms of the standard C free(): 
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extern void  
operator delete( void *ptr )  
{  
   if ( ptr )  
        free( (char*) ptr );  
}  

The Semantics of new Arrays 

When we write 

int *p_array = new int[ 5 ];  

vec_new() is not actually invoked, since its primary function is to apply the default constructor to each 
element in an array of class objects. Rather, the operator new instance is invoked: 

int *p_array = (int*) __nw( 5 * sizeof( int ));  

Similarly, if we write 

// struct simple_aggr { float f1, f2; };  
simple_aggr *p_aggr = new simple_aggr[ 5 ];  

vec_new() again is not likely to be invoked. Why? simple_aggr does not define either a constructor or 
destructor, so the allocation and deletion of the array addressed by p_aggr involves only the obtaining and 
release of the actual storage. This is sufficiently managed by the simpler and more efficient operators new 
and delete. 

If a class defines a default constructor, however, some version of vec_new() is invoked to allocate and 
construct the array of class objects. For example, the expression 

Point3d *p_array = new Point3d[ 10 ];  

is generally transformed into 

Point3d *p_array;  
 
p_array = vec_new( 0, sizeof( Point3d ), 10,  
                  &Point3d::Point3d,  
                  &Point3d::~Point3d );  

Recall that the destructor is passed to vec_new() in case an exception is thrown during construction of the 
individual array elements. Only the already constructed elements need the destructor applied to them. 
Because the memory was allocated for the array within vec_new(), vec_new() is responsible for freeing it 
in the event of an exception's being thrown. 

Prior to Release 2.0, the programmer was responsible for providing the actual size of the array being deleted 
by an application of operator delete. Thus if we had earlier written 

int array_size = 10;  
Point3d *p_array = new Point3d[ array_size ];  

we then would have had to write 

delete [ array_size ] p_array;  

and hope that in fact p_array had not had its original array deleted already and a new array assigned with a 
different number of elements. In Release 2.1, the language was modified. The user no longer has to specify 
the number of array elements to be deleted. Thus we could now write 
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delete [] p_array;  

although for backward compatibility, both forms are usually still accepted. The first implementation of course 
was in cfront. Jonathan Shopiro did the actual library implementation. Support requires first the storage and 
then the retrieval of the element count associated with the pointer. 

Concern over the impact of searching for the array dimension on the performance of the delete operator led 
to the following compromise. The compiler searches for a dimension size only if the bracket is present. 
Otherwise, it assumes a single object is being deleted. If the programmer fails to provide the necessary 
bracket, such as 

delete p_array;  // oops  

then only the first element of the array is destructed. The remaining elements are undestructed, although 
their associated memory is reclaimed. The less error-prone strategy of checking all delete operations for a 
possible array entry was rejected as being too costly. 

An interesting difference between implementations is whether the element count, when explicitly supplied, 
should be used. In Jonathan's original version of the code, he gives precedence to the user's explicit value. 
Here is a pseudo-version of what he wrote, with commentary: 

// first check to see if the last item allocated  
// ( __cache_key ) is the item currently being deleted.  
//  
// if it is, no search need take place.  
// if not, then look for the stored element count  
 
int elem_count = __cache_key == pointer  
      ? ((__cache_key = 0), __cache_count)  
        : // fetch element count  
 
// num_elem: element count passed to vec_new()  
// for array allocated from heap, this is only set  
// for the form:delete [10] ptr  
// otherwise cfront passed it a -1 indicating `fetch'  
 
if ( num_elem == -1 )  
   // prefer explicit user size if choice!  
   num_elem = ans;  

Nearly all new C++ compilers choose not to consider the explicit user value, if present: 

x.c", line 3: warning(467):  
   delete array size expression ignored (anachronism)  
   foo() { delete [ 12 ] pi; }  

Why did Jonathan choose to give precedence to the user-specified value, while newer compilers do not? At 
the time of its introduction, no user code existed that did not explicitly provide the array size. Had cfront 
continued to a Release 4.0, we would have labeled the idiom an anachronism and likely have generated a 
similar warning. 

How is this caching of the element count implemented? One obvious way is to allocate an additional word of 
memory with each chunk of memory returned by the vec_new() operator, tucking the element count in that 
word (generally, the value tucked away is called a cookie). However, Jonathan and the Sun implementation 
chose to keep an associative array of pointer values and the array size. (Sun also tucks away the address of 
the destructor—see [CLAM93n].) 

The general concern with the cookie strategy was that if a bad pointer value should get passed to 
delete_vec(), the cookie fetched would of course be invalid. An invalid element count and bad beginning 
address would result in the destructor's being applied on an arbitrary memory areaan arbitrary number of 
times. Under the associative array strategy, however, the likely result of a bad address's being passed is 
simply the failure to fetch an element count. 
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Within the original implementation, two primary functions were added to support the storage and retrieval of 
the element count cookie: 

// array_key is the address of the new array  
// mustn't either be 0 or already entered  
// elem_count is the count; it may be 0  
 
typedef void *PV;  
extern int __insert_new_array(PV array_key, int elem_count);  
 
// fetches (and removes) the array_key from table  
// either returns the elem_count, or -1  
 
extern int __remove_old_array(PV array_key);  

The following is a prettified representation of the original cfront implementation of vec_new(), with 
commentary: 

PV __vec_new(PV ptr_array, int elem_count,  
            int size, PV construct )  
{  
// if ptr_array is 0, allocate array from heap  
// if set, programmer wrote either  
//    T array[ count ];  
// or  
//    new ( ptr_array ) T[ 10 ]  
 
int alloc = 0; // did we allocate here within vec_new?  
int array_sz = elem_count * size;  
 
if ( alloc = ptr_array == 0)  
      // global operator new ...  
      ptr_array = PV( new char[ array_sz ] );  
 
// under Exception Handling,  
// would throw exception bad_alloc  
if ( ptr_array == 0/  
    return 0;  
 
// place (array, count) into the cache  
int status = __insert_new_array( ptr_array, elem_count );  
if (status == -1) {  
   // under Exception Handling, would throw exception  
   // would throw exception bad_alloc  
   if ( alloc )  
      delete ptr_array;  
   return 0;  
}  
 
if (construct) {  
   register char* elem = (char*) ptr_array;  
   register char* lim = elem + array_sz;  
   // PF is a typedef for a pointer to function  
   register PF fp = PF(construct);  
   while (elem < lim) {  
      // invoke constructor through fp  
      // on `this' element addressed by elem  
      (*fp)( (void*)elem );  
 
      // then advance to the next element  
      elem += size;  
   }  
}  
return PV(ptr_array);  
}  
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vec_delete() works similarly, but its behavior is not always what the C++ programmer either expects or 
requires. For example, given the following two class declarations: 

class Point { public:  
   Point();  
   virtual ~Point();  
   // ...  
};  
 
class Point3d : public Point { public:  
   Point3d();  
   ~Point3d();  
   // ...  
}  

the allocation of an array of ten Point3d objects results in the expected invocation of both the Point and 
Point3d constructor ten times, once for each element of the array: 

// Not at all a good idea  
Point *ptr = new Point3d[ 10 ];  

What happens, however, when we delete the array of ten Point3d elements addressed by ptr? Obviously, we 
need the virtual mechanism to kick in to have the expected invocation of both the Point and Point3d 
destructor ten times, once for each element of the array: 

// oops: not what we need!  
// only Point::~Point invoked ...  
delete [] ptr;  

The destructor to be applied to the array, as we've seen, is passed to vec_delete() based on the type of 
the pointer being deleted. In this case, the Point destructor is passed. This is obviously not what we want. 
Moreover, the size of each element is also passed; this is how vec_delete() iterates across the array 
elements. In this case, the size of the Point class object, not of the Point3d class object, is passed. Oops. The 
whole operation fails miserably. Not only is the wrong constructor applied, but after the first element, it is 
applied to incorrect chunks of memory. 

What should a programmer do? The best thing is to avoid addressing an array of derived class objects with a 
pointer to its base class if an object of the derived class is larger than that of the base. If you really must 
program this way, the solution is programmer-based rather than language-based: 

for ( int ix = 0; ix < elem_count; ++ix )  
{  
   Point *p = &((Point3d*)ptr)[ ix ];  
   delete p;  
}  

Essentially, the programmer must iterate through the array, applying the delete operator to each element. 
In this way, the invocation is virtual and both the Point3d and Point destructors are applied to each object. 

The Semantics of Placement Operator new 

A predefined overloaded instance of operator new is that of the placement operator new. It takes a second 
argument of type void*. The invocation looks as follows: 

Point2w ptw = new ( arena ) Point2w;  

where arena addresses a location in memory in which to place the new Point2w object. The implementation 
of this predefined placement operator new is almost embarrassingly trivial. It simply returns the address of 
the pointer passed to it: 

void*  
operator new( size_t, void* p )  
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{  
   return p;  
};  

If all it does is return the address of its second argument, why use it at all? That is, why not simply write 

Point2w ptw = ( Point2w* ) arena;  

since in effect that's what actually happens? Well, actually it's only half of what happens, and it's the second 
half that the programmer cannot explicitly reproduce. Consider these questions: 

1. What is the second half of the placement new operator expansion that makes it work (and that the 
explicit assignment of arena does not provide for)? 

2. What is the actual type of the pointer represented by arena and what are the implications of that 
type? 

The second half of the placement new operator expansion is the automatic application of the Point2w 
constructor applied to the area addressed by arena: 

// Pseudo C++ code  
Point2w ptw = ( Point2w* ) arena;  
if ( ptw != 0 )  
     ptw->Point2w::Point2w();  

This is what makes the use of the placement operator new so powerful. The instance determines where the 
object is to be placed; the compilation system guarantees that the object's constructor is applied to it. 

There is one slight misbehavior, however. Do you see what it is? For example, consider this program 
fragment: 

// let arena be globally defined  
void fooBar() {  
   Point2w *p2w = new ( arena ) Point2w;  
   // ... do it ...  
   // ... now manipulate a new object ...  
   p2w = new ( arena ) Point2w;  
}  

If the placement operator constructs the new object "on top of" an existing object and the existing object has 
an associated destructor, the destructor is not being invoked. One way to invoke the destructor is to apply 
operator delete to the pointer. But in this case, that's the absolutely wrong thing to do: 

// not the right way to apply destructor here  
delete p2w;  
p2w = new ( arena ) Point2w;  

The delete operator applies the destructor—this is what we want. But it also frees the memory addressed by 
p2w—this is definitely not what we want, since the next statement attempts to reuse it. Rather, we need to 
explicitly invoke the destructor and preserve the storage for reuse: [1] 

[1] Standard C++ has rectified this with a placement operator delete that applies the destructor to the object but 
does not free the memory. A direct call of the destructor is no longer necessary. 

// the correct way of applying destructor  
p2w->~Point2w;  
p2w = new ( arena ) Point2w;  

The only remaining problem is a design one: Does the first invocation of the placement operator in our 
example also construct the new object "on top of" an existing object, or is the arena addressed "raw"? That 
is, if we have 
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Point2w *p2w = new ( arena ) Point2w;  

how can we know whether the area addressed by arena needs first to be destructed? There is no language-
supported solution to this. A reasonable convention is to have the site applying new be responsible for also 
applying the destructor. 

The second question concerns the actual type of the pointer represented by arena. The Standard says it 
must address either a class of the same type or raw storage sufficient to contain an object of that type. Note 
that a derived class is explicitly not supported. For a derived class or otherwise unrelated type, the behavior, 
while not illegal, is undefined. 

Raw storage might be allocated as follows: 

char *arena = new char[ sizeof( Point2w ) ];  

An object of the same type looks as you might expect: 

Point2w *arena = new Point2w;  

In both cases, the storage for the new Point2w exactly overlays the storage location of arena, and the 
behavior is well defined. In general, however, the placement new operator does not support polymorphism. 
The pointer being passed to new is likely to address memory preallocated to a specific size. If the derived 
class is larger than its base class, such as in the following: 

Point2w p2w = new ( arena ) Point3w;  

application of the Point3w constructor is going to wreak havoc, as will most subsequent uses of p2w. 

One of the more "dark corner-ish" questions that arose when the new placement operator was introduced in 
Release 2.0 was the following example brought up by Jonathan Shopiro: 

struct Base { int j; virtual void f(); };  
struct Derived : Base { void f(); };  
 
void fooBar() {  
   Base b;  
   b.f(); // Base::f() invoked  
   b.~Base();  
   new ( &b ) Derived; // 1  
   b.f(); // which f() invoked?  
}  

Since the two classes are the same size, the placement of the derived object within the area allocated for the 
base class is safe. Supporting it, however, would probably require giving up the general optimization of 
invoking statically all virtual functions calls through objects, such as b.f(). Consequently, this use of the 
placement new operator is also unsupported under the Standard (see Section 3.8). The behavior of the 
program is undefined: We cannot say with certainty which instance of f() is invoked. (Most implementations,
if they were to compile this, would probably invoke Base::f(), while most users would probably expect the 
invocation of Derived::f().) 

Ru-Brd  

Ru-Brd  

6.3 Temporary Objects 

If we have a function of the form 

T operator+( const T&, const T& );  

and two objects of class T—a and b—the expression 
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a + b;  

may result in a temporary being generated to hold the returned object. Whether a temporary results depends 
in part on the aggressiveness of the compiler and in part on the program context in which the expression 
occurs. For example, consider the following program fragment: 

T a, b;  
T c = a + b;  

A compiler could introduce a temporary to hold the result of a + b, followed by the application of T's copy 
constructor to initialize c with that temporary. However, the more probable transformation is to directly copy 
construct the result of that expression into c (see Section 2.3 for a discussion of the transformation of the 
addition operator), thus eliminating both the temporary and the associated calls of its constructor and 
destructor. 

Moreover, depending on the definition of the operator+(), the named return value (NRV) optimization 
(again, see Section 2.3) is likely to be applied. This would result in the direct evaluation of the expression 
within c and the avoidance of both the call of the copy constructor and the call of the named object's 
destructor. 

The resulting value of c is the same in all three cases. The difference is the cost of initialization. Is there any 
guarantee what a compiler will do? Strictly speaking, no. The Standard allows the implementation complete 
freedom regarding temporary generation: 

In some circumstances it might be necessary or convenient for the processor to generate a 
temporary object. Precisely when such temporaries are introduced is implementation-defined. 
(Section 12.2) 

In theory, the Standard allows the implementation complete freedom. In practice, the competition of the 
marketplace virtually guarantees that any expression of the form 

T c = a + b;  

where the addition operator is defined as either 

T operator+( const T&, const T& );  

or 

T T::operator+( const T& );  

is implemented without the generation of a temporary. 

Note, however, that the equivalent assignment statement 

c = a + b;  

cannot safely eliminate the temporary. Rather, this results in the following general sequence: 

// Pseudo C++ code  
// T temp = a + b;  
T temp;  
a.operator+( temp, b );    // 1  
 
// c = temp  
c.operator =( temp ); // 2  
temp.T::~T();  

In the line marked //1, the unconstructed temporary is passed to operator+(). This means that either the 
result of the expression is copy constructed into the temporary or the temporary is used in place of the NRV. 

Page 154 of 182

22/08/2003file://C:\Documents%20and%20Settings\Mark\Local%20Setting...



In the latter case, the constructor that would have been applied to the NRV is applied to the temporary. 

In either case, directly passing c, the target of the assignment, into the operator function is problematic. 
Since the operator function does not invoke a destructor on its additional argument (it expects "raw" 
memory), the destructor needs be invoked prior to the call. However, then the semantics of the 
transformation would be to replace assignment: 

c = a + b; // c.operator==( a + b );  

with its implicit invocation of the copy assignment operator, with a sequence of destruction and copy 
construction: 

// Pseudo C++ code  
c.T::~T();  
c.T::T( a + b );  

The copy constructor, destructor, and copy assignment operator can be user-supplied functions, so there can 
be no guarantee that the two sequences result in the same semantics. Therefore the replacement of 
assignment with a sequence of destruction and copy construction is generally unsafe and the temporary is 
generated. So an initialization of the form 

T c = a + b;  

is in practice always more efficiently translated than is an assignment of the form 

c = a + b;  

A third form of the expression is without any target: 

a + b; // no target!  

In this case, a temporary is necessarily generated to hold the expression. Although this may, in itself, seem 
bizarre, its occurrence in practice occurs rather commonly in subexpressions. For example, if we have 

String s( "hello"), t( "world" ), u( "!" );  

either 

String v;  
v = s + t + u;  

or 

printf( "%s\n", s + t );  

results in a temporary being associated with the s + t subexpression. 

This last expression raises the somewhat esoteric issue of what is the lifetime of a temporary; this deserves a 
closer look. Prior to Standard C++, the temporary's lifetime—that is, when its destructor is applied—was 
explicitly left unspecified; it was explicitly said to be implementation dependent. This meant that an 
expression such as the call to printf() could not be proved to be generally safe, since its correctness 
depended on when the temporary associated with s + t was destroyed. 

(The presumption in this example of a String class is that the class defines a conversion operator of the form 

String::operator const char*() { return _str; }  

where _str is a private member addressing storage allocated during the construction of the String object 
and deallocated within its destructor.) Thus if the temporary is destroyed prior to invoking printf(), the 
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address passed to it by the conversion operator is likely to be invalid. The actual results are implementation 
dependent based on how aggressive the underlying delete operator is in actually freeing the memory 
addressed. Some implementations, while marking the memory as free, do not actually alter it in any way. 
Until the memory is claimed by something else, it can be used as if it had not been deleted. While obviously 
not an exemplary approach to software engineering, this idiom of accessing memory after it has been freed is 
not uncommon. Many implementations of malloc(), in fact, provide a special invocation 

malloc( 0 );  

to guarantee just this behavior. 

For example, here is one possible pre-Standard transformation of the expression that, although legal under 
the pre-Standard language definition, is likely to be disastrous: 

// Pseudo C++ code: pre-Standard legal transformation  
// temporary is destroyed too soon ...  
 
String temp1 = operator+( s, t );  
const char *temp2 = temp1.operator const char*();  
 
// oops: legal but ill-advised (pre-Standard)  
temp1.~String();  
 
// undefined what temp2 is addressing at this point!  
printf( "%s\n", temp2 );  

An alternative (and, in this case, preferred) transformation is to apply the String destructor after the call to 
printf(). Under the Standard, this is the required transformation of this expression. The exact wording is 
as follows: 

Temporary objects are destroyed as the last step in evaluating the full-expression that 
(lexically) contains the point where they were created. (Section 12.2) 

What is a full-expression? Informally, it is the outermost containing ex-pression. For example, consider the 
following: 

// tertiary full expression with 5 sub-expressions  
(( objA > 1024 ) && ( objB > 1024 ))  
     ? objA + objB : foo( objA, objB );  

There are five subexpressions contained within the one ?: full-expression. This means that any temporaries 
generated within any of the subexpressions must not be destroyed until the entire tertiary expression has 
been evaluated. 

This lifetime of temporaries rule becomes somewhat complex to support when the temporary is conditionally 
generated based on runtime semantics of the program. For example, what's hard about an expression such 
as 

if ( s + t || u + v )  

is that the u+vsubexpression is only conditionally evaluated based on s+t evaluating as false. The temporary 
associated with the second subexpression must be destroyed, but, obviously, must not be unconditionally 
destroyed. That is, it is desirable to destroy the temporary only in those cases when it has been created! 

Prior to the lifetime of temporaries rule, the standard implementation was to attach both the initialization and 
destruction of the temporary to the evaluation of the second subexpression. For example, with the following 
class declaration: 

class X {  
public:  
   X();  
   ~X();  
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   operator int();  
   X foo();  
private:  
   int val;  
};  

and the following conditional test of two objects of class X: 

main() {  
   x xx;  
   x yy;  
 
   if ( xx.foo() || yy.foo() )  
   ;  
 
   return 0;  
}  

cfront generates the following program transformation of main() (the output has been slightly prettified and 
commented): 

int main (void ){  
   struct x __1xx ;  
   struct x __1yy ;  
 
   int __0_result;  
 
   // name_mangled default constructor:  
   // X::X( X *this )  
   __ct__1xFv ( & __1xx ) ;  
   __ct__1xFv ( & __1yy ) ;  
 
   {  
      // generated temporaries ...  
      struct x __0__Q1 ;  
      struct x __0__Q2 ;  
      int __0__Q3 ;  
 
      /* each side becomes a comma expression of  
       * the following sequence of steps:  
       *  
       *  tempQ1 = xx.foo();  
       *  tempQ3 = tempQ1.operator int();  
       *  tempQ1.X::~X();  
       *  tempQ3;  
       */  
 
      // __opi__1xFv ==> X::operator int()  
 
      if ((((  
         __0__Q3 = __opi__1xFv(((  
         __0__Q1 = foo__1xFv( &__1xx )), (&__0__Q1 )))),  
         __dt__1xFv( &__0__Q1, 2) ), __0__Q3 )  
       || (((  
         __0__Q3 = __opi__1xFv(((  
         __0__Q2 = foo__1xFv( & __1yy )), (&__0__Q2 )))),  
         __dt__1xFv( & __0__Q2, 2) ), __0__Q3 ));  
   {{  
         __0_result = 0 ;  
         __dt__1xFv ( & __1yy , 2) ;  
         __dt__1xFv ( & __1xx , 2) ;  
   }  
 
   return __0_result ;  
}}}  
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This strategy of placing the temporary's destructor in the evaluation of each subexpression circumvents the 
need to keep track of whether the second subexpression is actually evaluated. However, under the Standard's
lifetime of temporaries rule, this implementation strategy is no longer permissible. The temporaries must not 
be destroyed until after evaluation of the full expression—that is, both sides—and so some form of conditional
test must be inserted now to determine whether to destroy the temporary associated with the second 
subexpression. 

There are two exceptions to the lifetime of temporaries rule. The first concerns an expression used to 
initialize an object; for example, 

bool verbose;  
...  
String progNameVersion =  
      !verbose  
         ? 0  
         : progName + progVersion;  

where progName and progVersion are String objects. A temporary is created to hold the result of the 
addition operator 

String operator+( const String&, const String& );  

The temporary must be conditionally destructed based on the outcome of the test of verbose. Under the 
lifetime of temporaries rule, the temporary should be destroyed as soon as the full ?: expression is 
evaluated. However, if the initialization of progNameVersion requires invocation of a copy constructor 

// Pseudo C++ Code  
progNameVersion.String::String( temp );  

then destruction of the temporary following evaluation of the ?: expression is certainly not what one wants. 
The Standard, therefore, requires 

…the temporary that holds the result of the expression shall persist until the object's 
initialization is complete. 

Even with all the firming up regarding the lifetime of temporaries that the Standard accomplished, it is still 
possible for programmers to have a temporary destroyed out from under them. The primary difference now is
that the behavior is well defined. For example, here is an initialization that is guaranteed to fail under the 
new lifetime of temporaries rule: 

// Oops: not a good idea  
const char *progNameVersion =  
   progName + progVersion;  

where again progName and progVersion are String objects. The code generated for this looks something 
like: 

// Pseudo C++ Code  
String temp;  
operator+( temp, progName, progVersion );  
progNameVersion = temp.String::operator char*();  
temp.String::~String();  

progNameVersion now points into undefined heap memory. 

The second exception to the lifetime of temporaries rule concerns when a temporary is bound to a reference. 
For example, 

const String &space = " ";  

generates code that looks something like 
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// Pseudo C++ Code  
String temp;  
temp.String::String( " " );  
const String &space = temp;  

Obviously, if the temporary were destroyed now, the reference would be slightly less than useless. So the 
rule is that a temporary bound to a reference 

persists for the lifetime of the reference initialized or until the end of the scope in which the 
temporary is created, whichever comes first. 

A Temporary Myth 

A general perception is that the generation of temporaries within current C++ implementations contributes to 
inefficiencies in program execution that make C++ a poor second choice over FORTRAN in scientific and 
engineering computing. Further, it is thought that this lack of efficiency offsets the greater abstracting 
facilities of C++ (see [BUDGE92], for example). (For arguments against this position, see [NACK94].) An 
interesting study in this regard is that of [BUDGE94] published in The Journal of C Language Translation. 

In a comparison of FORTRAN-77 and C++, Kent Budge and his associates programmed a complex number 
test case in both languages. (complex is a built-in type in FORTRAN; in C++, it is a concrete class with two 
members, one real and one imaginary. Standard C++ has made the complex class part of the standard 
library.) The C++ program implemented inline arithmetic operators of the form 

friend complex operator+( complex, complex );  

(Note that passing class objects containing constructors and destructors by value rather than by reference, 
such as 

friend complex  
operator+( const complex&, const complex& );  

is generally not good programming style in C++. Apart from the issue of copying by value possibly large class
objects, the local instance of each formal argument has to be copy constructed and destructed and may 
result in the generation of a temporary. In this test case, the authors claim that converting the formal 
arguments to const references did not significantly increase performance. This is only because each function 
invocation is inlined.) 

The test function looked like: 

void func( complex *a, const complex *b,  
           const complex *c, int N )  
{  
   for ( int i = 0; i < N; i++ )  
      a[i] = b[i]+c[i] - b[i]*c[i];  
}  

where the addition, subtraction, multiplication, and assignment operators for the complex C++ class are 
inline instances. The C++ code generated five temporaries: 

1. A temporary to hold the value of the subexpression b[i]+c[i] 

2. A temporary to hold the value of the subexpression b[i]*c[i] 

3. A temporary to hold the result of subtracting item 2 from item 1 

4. Two temporaries, one each to hold the results of items 1 and 2 in order to carry out item 3 

Time comparisons against the FORTRAN-77 code showed the FORTRAN code to be nearly twice as fast. Their 
first assumption was to blame the temporaries. To verify that, they hand-eliminated all temporaries in the 
intermediate cfront output. As expected, the performance increased two-fold and equaled that of FORTRAN-
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77. 

Not stopping there, Budge and his associates experimented with a different approach. Rather than eliminating
the temporaries, they "disaggregated" them. That is, they hand-coded the temporary aggregate class 
structure into pairs of temporary doubles. They discovered that disaggregation resulted in performance as 
efficient as that achieved by temporary elimination. They noted the following: 

The translation systems we tested are evidently able to eliminate local variables of built-in type, 
but not local variables of class type. This is a limitation of C back-ends, not of the C++ front-
end, and it appears to be pervasive, since it appears in both [sic] Sun CC, GNU g++, and HP 
CC. [BUDGE94] 

The paper analyzes the generated assembly and shows that the cause of the performance degradation is the 
large number of program stack accesses to read and write the individual class members. By disaggregating 
the class and moving the individual members into registers, they were able to achieve nearly doubled 
performance. This led them to conclude the following: 

Disaggregation of structs is achievable with modest effort, but has not generally been 
recognized as an important optimization prior to the introduction of C++ [BUDGE94]. 

In a sense, this study is simply a persuasive argument for good optimization. There already exist some 
optimizers, I'm told, that do put pieces of temporary classes into registers. As compiler implementations shift 
their focus from language feature support (with the completion of Standard C++) to quality of 
implementation issues, optimizations such as disaggregation should become commonplace. 

 
Ru-Brd  

Ru-Brd  

Chapter 7. On the Cusp of the Object Model 

In this chapter, I discuss three prominent extensions to the language that affect the C++ Object Model: 
templates, exception handling (EH), and runtime type identification (RTTI). EH (and RTTI, which in a sense is 
a side effect of EH) is an exception to the other language features covered here in that I have never had the 
opportunity to actually implement it. My discussion, therefore, relies on [CHASE94], [LAJOIE94a], 
[LAJOIE94b], [LENKOV92], and [SUN94a]. 

 
Ru-Brd  

Ru-Brd  

7.1 Templates 

C++ programming styles and idioms have been profoundly transformed since the introduction of templates 
(with cfront, Release 3.0, in 1991) and experience using them. Originally viewed as a support for container 
classes such as Lists and Arrays, templates are now the foundation for generic programming (the Standard 
Template Library). They also are used as idioms for attribute mix-in where, for example, memory allocation 
strategies ([BOOCH93]) or mutual exclusion mechanisms for synchronizing threads ([SCHMIDT94]) are 
parameterized. They further are used as a technique for template metaprograms, in which class expression 
templates are evaluated at compile time rather than runtime, thereby providing significant performance 
improvements ([VELD95]). 

That said, however, it is also true that programming with templates is currently one of the most frustrating 
aspects of C++ programming. Error messages are often generated far from the actual site of the problem. 
Compilation times often rise exponentially, and one begins to positively dread changing a header file with 
multifile dependencies, particularly if one is in the midst of debugging. It also isn't uncommon to find 
unexpected ballooning of program size. Further, all these behaviors are generally beyond the comprehension 
of the average programmer who simply wants to get his or her work done and who, if these problems persist, 
may come to view the language more as an obstacle than as an aid. It is not uncommon to find a designated 
template expert among the members of a project who trouble-shoots and attempts to optimize the 
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generation of templates. 

This section focuses on the semantics of template support, a sort of when, why, and how of what is done with
templates within a compilation system. There are three primary aspects of template support: 

1. Processing of the template declarations—essentially, what happens when you declare a template class, 
template class member function, and so on. 

2. Instantiation of the class object and inline nonmember and member template functions. These are 
instances required within each compilation unit. 

3. Instantiation of the nonmember and member template functions and static template class members. 
These are instances required only once within an executable. This is where the problems with 
templates generally arise. 

I use instantiation to mean the process of binding actual types and expressions to the associated formal 
parameters of the template. For example, with the template function 

template <class Type>  
Type  
min( const Type &t1, const Type &t2 ) { ... }  

and its use 

min( 1.0, 2.0 );  

the instantiation process binds Type to double and creates a program text instance of min() (suitably 
mangled to give it a unique name within the executable) in which t1 and t2 are of type double. 

Template Instantiation 

Consider the following template Point class: 

template <class Type>  
class Point  
{  
public:  
   enum Status { unallocated, normalized };  
 
   Point( Type x = 0.0, Type y = 0.0, Type z = 0.0 );  
   ~Point();  
 
   void* operator new( size_t );  
   void  operator delete( void*, size_t );  
 
   // ...  
private:  
   static Point< Type > *freeList;  
   static int chunkSize;  
   Type _x, _y, _z;  
};  

First, what happens when the compiler sees the template class declaration? In terms of the actual program, 
nothing. That is, the static data members are not available. Nor is the nested enum or its enumerators. 

Although the actual type of the enum Status is invariant across all Point instantiations, as well as the value of 
its enumerators, each can be accessed only through a particular instance of the template Point class. Thus we
can write 

// ok:  
Point< float >::Status s;  

Page 161 of 182

22/08/2003file://C:\Documents%20and%20Settings\Mark\Local%20Setting...



but not 

// error:  
Point::Status s;  

although both types, abstractly, are the same. (And, optimally, we'd want only a single instance of the enum 
to be generated. Failing that, we might want to factor out the enum to a nontemplate base class in order to 
prevent multiple copies.) 

Similarly, the static data members freeList and chunkSize are not yet available to the program. We 
cannot write 

// error:  
Point::freeList;  

but must specify the explicit template Point class instantiation with which the freeList member is 
associated: 

// ok:  
Point< float >::freeList;  

This use of the static member causes an instance associated with the float instantiation of the Point class to 
be generated within the program. If we write 

// ok: another instance  
Point< double >::freeList;  

a second freeList instance is generated, this one associated with the double instantiation of the Point class. 

If we define a pointer to a particular instance, such as 

Point< float > *ptr = 0;  

again, nothing happens in the program. Why? Because a pointer to a class object is not itself a class object; 
the compiler does not need to know anything about the layout or members of the class. So instantiating a 
float instance of Point is unnecessary. Until the C++ Standard, however, the effect of declaring a pointer to a
specific template class was left undefined; the compilation system might or might not instantiate the 
template (for example, cfront did, to the dismay of quite a few programmers). Under the Standard, the 
compilation system is explicitly prohibited from doing so. 

The behavior in declaring a reference to a particular instance of a template, however, such as 

const Point< float > &ref = 0;  

does result in the instantiation of a float instance of Point. The actual semantics of this definition expand as 
follows: 

// internal expansion  
Point< float > temporary( float (0) );  
const Point< float > &ref = temporary;  

Why? Because a reference cannot be an alias to "no object." The 0 is treated as an integer value that must be
converted into an object of the type 

Point< float >  

If there is no conversion possible, then the definition is in error and is flagged at compile time. 

So the definition of a class object, either implicitly by the compiler, as with the generation of temporary, or 
explicitly by the programmer, as in the following: 
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const Point< float > origin;  

results in the instantiation of the template class. This means the actual object layout of the float instantiation
is generated. Looking back at the template declaration, we see that a Point has three nonstatic members, 
each of type Type. Type becomes bound to type float, so origin is allocated space sufficient to contain 
three float members. 

However, the member functions—at least those that are not used— should not be instantiated. Standard C++
requires that member functions be instantiated only if they are used (current implementations do not strictly 
follow this requirement). There are two main reasons for the use-directed instantiation rule: 

1. Space and time efficiency. If there are a hundred member functions associated with a class, but your 
program uses only two for one type and five for a second type, then instantiating the additional 193 
can be a significant time and space hit. 

2. Unimplemented functionality. Not all types with which a template is instantiated support all the 
operators (such as i/o and the relational operators) required by the complete set of member functions. 
By instantiating only those member functions actually used, a template is able to support types that 
otherwise would generate compile-time errors. 

The definition of origin, for example, requires the invocation of the default Point constructor and destructor.
Only these two functions must be instantiated. Similarly, when the programmer writes 

Point< float > *p = new Point< float >;  

only the float instance of the Point template itself, the class instance operator new, and the default 
constructor need to be instantiated. (It's interesting to note that although operator new is implicitly a static 
member of the class and so may not directly access any of its nonstatic members, it is still dependent on the 
actual template parameter type because its size_t first argument is passed the class size.) 

When do these function instantiations take place? There are two current strategies: 

At compile time, in which case the functions are instantiated within the file in which origin and p are 
defined. 

At link time, in which case the compiler is reinvoked by some auxiliary tool. The template function 
instances may be placed within this file, some other file, or a separate repository. 

Function instantiation is discussed in more detail in a subsection later in the chapter. 

An interesting point raised in [CARGILL95] is whether, on an architecture in which types int and long are the 
same (or double and long double), the two type instantiations 

Point < int > pi;  
Point < long > pl;  

should result in one or two instantiations. Currently, all implementations I am aware of generate two 
instantiations (with possibly two complete sets of member function instantiations). The Standard does not 
address this point. 

Error Reporting within a Template 

Consider the following template declaration: 

1. template <class T>  
2. class Mumble  
3. {  
4. public$:  
5.    Mumble( T t = 1024 )  
6.       : _t( t )  
7.    {  
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8.       if ( tt != t )  
9.         throw ex ex;  
10.   }  
11.   private:  
12.      T tt;  
13.   }  

The declaration of the Mumble template class contains a collection of both blatant and potential errors: 

1. Line 4: The use of the $ character is incorrect. This error is two-fold: (1) The $ is not a valid character 
for an identifier, and (2) only public, protected, and private labels are permitted in the body of a class 
declaration (the presence of the $ no longer identifies it as the keyword label public). (1) is a lexical 
error, while (2) is a syntactic/parsing error. 

2. Line 5: The initialization of t to the integer constant 1024 may or may not be legal depending on the 
actual type of T. In general, this can be diagnosed only for each instantiation of the template. 

3. Line 6: _t is not the member name; tt is. This kind of error is generally discovered within the type-
checking phase during which each name is either bound to a definition or an error is generated. 

4. Line 8: The not equal operator (!=) may or may not be defined depending on the actual type of T. As 
with item 2, this can be diagnosed only for each instantiation of the template. 

5. Line 9: We accidentally typed ex twice. This is an error discovered during the parsing phase of the 
compilation (a legal "sentence" of the language cannot have one identifier following another). 

6. Line 13: We forgot to terminate the class declaration with a semicolon. Again, this is an error 
discovered during the parsing phase of the compilation. 

In a nontemplate class declaration, these six blatant and potential errors are resolved by the compiler at the 
point at which the declaration is seen. This is not the case with templates, however. For one thing, all type-
dependent checking involving the template parameters must be deferred until an actual instantiation occurs. 
That is, the potential errors on lines 5 and 8 (items 2 and 4, above) of the example are checked and reported 
for each instantiation and are resolved on a type-by-type basis. Thus for 

Mumble< int > mi;  

both lines are correct. For 

Mumble< int* > pmi;  

line 8 is correct, but line 5 is a type error—you cannot assign a pointer an integer constant (other than 0). 
With the declaration 

class SmallInt  
{  
public:  
   SmallInt( int );  
   // ...  
};  

within which the not-equal operator is not defined, the instance 

Mumble< SmallInt > smi;  

generates an error for line 8, while line 5 is correct. Of course, 

Mumble< SmallInt* > psmi;  

once again reverses that: Line 8 is again correct, but line 5 is again in error. 
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What, then, are the errors that are flagged when handling the template declaration? In part this depends on 
the processing strategy for the template. In the original cfront implementation, the template is fully parsed 
but not type-checked. Type-checking is applied only to each particular instantiation. So under a parsing 
strategy, all the lexing and parsing errors are flagged during the handling of the template declaration. 

The lexical analyzer would catch the illegal character on line 4. The parser itself would likely flag the 

public$: // caught  

as an illegal label within the class declaration. The parser would not flag the reference to an unnamed 
member: 

_t( t ) // not caught  

It would catch the presence of ex twice in the throw expression of line 9 and the missing semicolon on line 
13. 

In a popular alternative implementation strategy (for example, see [BALL92a]), the template declaration is 
collected as a sequence of lexical tokens. The parsing is delayed until an actual instantiation. When an actual 
instantiation is seen, the set of tokens is pushed through the parser and then type-checking is invoked, and 
so on. What errors does a lexical tokenizing of the template declaration flag? Very few, in fact; only the illegal
character used in line 4. The rest of the template declaration breaks up into a legal collection of tokens. 

In current implementation, that is, a template declaration has only limited error checking applied to it prior to 
an instantiation of an actual set of parameters. Non–syntax-related errors within a template that a user might
consider blatantly obvious are likely to compile without complaint and be flagged as an error only after a 
particular instance is defined. This is more an issue of current practices than an aspect of the template facility 
itself. The handling of template functions underscores this the most dramatically. 

Nonmember and member template functions are also not fully type-checked until instantiated. In current 
implementations, this leads to error-free compilations of some rather blatantly incorrect template 
declarations. For example, given the following template declaration of Foo: 

template < class type >  
class Foo {  
public:  
   Foo();  
   type val();  
   void val( type v );  
private:  
   type _val;  
};  

cfront, the Sun compiler, and Borland all compile this without complaint: 

// current implementations do not flag this definition  
// syntactically legal; semantically in error:  
// (a) bogus_member not a member function of class  
// (b) dbx not a data member of class  
 
template < class type >  
double Foo< type >::bogus_member() { return this->dbx; }  

Again, this is an implementation decision. There is nothing inherent in the template facility that disallows 
more rigorous error checking of the non–type-dependent portions of a template declaration. Certainly, errors 
like these could be discovered and flagged. Currently, however, it is simply not done. 

Name Resolution within a Template 

There is a distinction between the program site at which a template is defined (called in the Standard the 
scope of the template definition) and the program site at which a template is actually instantiated (called the 
scope of the template instantiation). An example of the first is 
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// scope of the template definition  
 
extern double foo ( double );  
 
template < class type >  
class ScopeRules  
{  
public:  
   void invariant() {  
      _member = foo( _val );  
   }  
 
   type type_dependent() {  
      return foo( _member );  
   }  
   // ...  
private:  
   int _val;  
   type _member;  
};  

and an example of the second is 

//scope of the template instantiation  
 
extern int foo( int );  
// ...  
ScopeRules< int > sr0;  

There are two invocations of foo() within the ScopeRules template class. Within the scope of the template 
definition, only one declaration of foo() is in scope. Within the scope of the template instantiation, however, 
two declarations are in scope. If we have an invocation such as 

// scope of the template instantiation  
sr0.invariant();  

the question is, which instance of foo() is invoked for the call: 

// which instance of foo()?  
_member = foo( _val );  

The two instances in scope at this point in the program are 

// scope of the template declaration  
extern double foo ( double );  
 
// scope of the template instantiation  
extern int foo( int );  

and the type of _val is int. So which do you think is chosen? (Hint: The only way to answer this correctly—
apart from guessing—is to know the answer.) Obviously, the instance chosen is the nonintuitive one: 

// scope of the template declaration  
extern double foo ( double );  

The program site of the resolution of a nonmember name within a template is determined by whether the use 
of the name is dependent on the parameter types used to instantiate the template. If the use is not 
dependent, then the scope of the template declaration determines the resolution of the name. If the use is 
dependent, then the scope of the template instantiation determines the resolution of the name. In this first 
example, then, the resolution of foo() is not dependent on the type parameter used to instantiate 
ScopeRules: 

// the resolution of foo() is not  
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// dependent on the template argument  
_member = foo( _val );  

This is because _val is an invariant template class member of type int; that is, the actual type used to 
instantiate the template has no effect on the type of _val. Moreover, function resolution is determined by 
the signature of the function only and not its return type. Thus the type of _member does not influence the 
choice of which foo() to invoke, and the invocation of foo() is not dependent on the template argument. 
The invocation must be resolved from the scope of the template declaration. Within that scope is only the one
candidate instance of foo() from which to choose. (Note that this behavior cannot be reproduced with a 
simple macro expansion, such as a use of #define macros of the preprocessor.) 

Let's look at a type-dependent usage: 

sr0.type_dependent();  

Which foo() does its call resolve to? 

return foo( _member );  

This instance clearly is dependent on the template argument that determines the actual type of _member. So 
this instance of foo() must be resolved from the scope of the template instantiation, which in this case 
includes both declarations of foo(). Since _member is of type int in this instance, it's the integer instance of 
foo() that is invoked. Were ScopeRules instantiated with an argument of type double, then the double 
instance would be invoked. Were it instantiated with an unsigned int or long, the invocation would be 
ambiguous. Finally, were it instantiated with a class type for which a conversion existed for neither instance, 
the invocation would be flagged as an error. Regardless of the outcome of the invocation, the candidate 
declarations reflect the scope of the template instantiation site and not of the template declaration. 

This means an implementation must keep two scope contexts: 

1. The scope of the template declaration, which is fixed to the generic template class representation 

2. The scope of the template instantiation, which is fixed to the representation of the particular instance 

The compiler's resolution algorithm must determine which is the appropriate scope within which to search for 
the name. 

Member Function Instantiation 

The most difficult aspect of template support is template function instantiation. Current implementations 
provide two instantiation strategies: a compile-time strategy in which the code source must be available 
within the program text file and a link-time strategy in which some meta-compilation tool directs the compiler
instantiation. 

There are three main questions an implementation has to answer: 

1. How does the implementation find the function definition? 

One solution is to require that the template program text file be included the same as if it were a 
header file. The Borland compiler, for example, follows this strategy. Or we could require a file-naming 
convention. For example, we could require that the template program text for a declaration found in a 
file Point.h be placed in a file Point.C or Point.cpp, and so on. cfront follows this strategy. The Edison 
Design Group compiler supports both. 

2. How does the implementation instantiate only those member functions that are actually used by the 
application? 

One solution is simply to ignore this requirement and instead generate all the member functions of an 
instantiated class. The Borland compiler, for example, follows this strategy, while supporting 
#pragmas to suppress or instantiate specific instances. An alternative strategy is to simulate linkage 
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of the application to see which instances are actually required and generate only those. cfront follows 
this strategy. The Edison Design Group compiler supports both. 

3. How does the implementation prevent the instantiation of member definitions within multiple .o files? 

One solution is to generate multiple copies and then provide support from the linker to ignore all but 
one instance. Another solution is the use-directed instantiation strategy of simulating the link phase to 
determine which instances are required. 

The current weakness of both compile-time and link-time instantiation strategies is a sometimes significant 
increase in compile time while the template instances are being generated. Obviously, there is going to be a 
first-time instantiation requirement for the template functions. Implementations break down, however, when 
those functions are reinstantiated unnecessarily or when the overhead for determining whether the functions 
need to be reinstantiated takes too long. 

The original intention of C++ template support envisioned a use-directed automatic instantiation mechanism 
that required neither user intervention nor multiple instantiations of the same file. This has proved 
considerably more difficult to achieve than anyone at the time imagined (see [STROUP94]). ptlink, the 
original instantiation tool accompanying Release 3.0, provided a use-driven automatic instantiation 
mechanism but was far too complex for even sophisticated users to understand and was unacceptably slow 
for large applications. 

The Edison Design Group has developed a "second-generation" directed-instantiation mechanism that comes 
closest (of those I am aware of) to the original intention of the template facility. Briefly, it works as follows: 

1. The initial compilation of a program's source files does not result in any template instantiations. 
However, information about instances that could have been instantiated is generated within the object 
file. 

2. When the object files are linked together, a prelinker program is executed. It examines the object files 
looking for references to and corresponding definitions of template instances. 

3. For each reference to a template instance for which there is no definition, the prelinker identifies a file 
in which it could have been instantiated (using the information generated in step 1). In this way, it 
assigns the necessary program instantiations to particular files. These are registered in a prelinker- 
generated .ii file stored in an ii_file directory. 

4. The prelinker reexecutes the compiler to recompile each file for which the .ii files have changed. This is 
repeated until a transitive closure of all necessary instantiations is achieved. 

5. The object files are linked together into an executable. 

The primary cost of this directed-instantiation scheme is the set-up time of the .ii files the first time the 
program is compiled. A secondary cost is the need to run the prelinker for every compile afterwards in order 
to ensure a definition exists for all referenced templates. After the initial set-up and successful first link, 
recompilation consists of the following: 

1. For each program text file being recompiled, the compiler checks the associated .ii file. 

2. If the associated .ii file lists a set of templates to be instantiated, those templates (and only those 
templates) are instantiated in the course of compiling the program text file. 

3. The prelinker must be run to ensure all referenced templates have been defined. 

The presence of some form of automated template mechanism is, in my opinion, a necessary component of a 
programmer-friendly C++ compilation system, although admittedly no current system is problem-free. Still, 
as a developer, I would not use or recommend a system without such a mechanism. 

Unfortunately, no mechanism is without its bugs. The Edison Design Group's compiler uses an algorithm 
introduced in cfront, Release 2.0 [KOENIG90a], to automatically generate (in most cases) a single instance of 

Page 168 of 182

22/08/2003file://C:\Documents%20and%20Settings\Mark\Local%20Setting...



a virtual table for each class within a program. For example, given the following class declaration: 

class PrimitiveObject : public Geometry  
{  
public:  
   virtual ~PrimitiveObject();  
   virtual void draw();  
   ...  
};  

that is included in 15 or 45 program text files, how can the compiler ensure that only one virtual table 
instance is generated (generating 15 or 45 is easy!)? 

Andy Koenig came up with the following observation: The address of every virtual function is placed within 
the virtual tables of the classes for which it is active. [1]By having the function's address taken, the definition 
of the virtual function must be present somewhere within the program; otherwise, the program will not link. 
Moreover, only one instance of the function can be present or the program will not link. So, place the virtual 
table in the file within which is defined the first non-inline, nonpure virtual function defined by the class. In 
our example, the compiler generates the virtual table within the file within which the virtual destructor is 
stored. 

[1] This has been relaxed by the standard.

 

Unfortunately, this single definition observation does not necessarily hold true under templates. Not only may 
multiple definitions be generated under the "compile everything in the module" model of template support, 
but link editors now permit multiple definitions, choosing one and ignoring the rest. 

Okay, very interesting, but what does this have to do with the Edison Design Group's automatic instantiation 
mechanism? Consider the following library function: 

void foo( const Point< float > *ptr )  
{  
   ptr->virtual_func();  
};  

The virtual function call is translated into something like: 

// Pseudo C++ code  
// ptr->virtual_func();  
( *ptr->__vtbl__Point< float >[ 2 ] )( ptr );  

thus resulting in an instantiation of the float instance of the Point class and that of virtual_func(). 
Because the address of each virtual function is placed within the table, if the virtual table is generated each 
virtual function must also be instantiated. This is why the Standard has the following, otherwise puzzling 
clause in Section 14.3.2: 

If a virtual function is instantiated, its point of instantiation is immediately following the point of 
instantiation for its class. 

However, if the compiler follows cfront's virtual table implementation scheme, the table will not be generated 
until a definition of the virtual destructor for the float instance of Point is instantiated. Except, at this point, 
there is no explicit use of the virtual destructor to warrant its instantiation. 

The Edison Design Group's automatic template mechanism does not realize the implicit use its own compiler 
makes of the first non-inline, nonpure virtual function and so does not mark it for instantiation within a .ii file.
As a result, the linker comes back complaining of the absence of the 

__vtbl__Point< float >  

symbol and refuses to create an executable. Oh, bother! Automatic instantiation breaks down in this case, 
and the programmer must explicitly force the destructor to be instantiated. Currently, this is supported under 
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this compilation system with the use of #pragma directives. The Standard, however, has extended template 
support to allow the programmer to explicitly request the instantiation within a file of an entire class 
template: 

template class Point3d< float >;  

an individual member function of a template class: 

template float Point3d<float>::X() const;  

and an individual template function: 

template Point3d<float> operator+(  
   const Point3d<float>&, const Point3d<float>& );  

In practice, template instantiation seems to resist full automation. Even when everything works right, the 
resulting set of object files may still prove too costly to recompile regularly if the application is large enough. 
Manual preinstantiation within a separate object module is tedious but often is the only effective solution. 
Ru-Brd  

Ru-Brd  

7.2 Exception Handling 

The primary implementation task in supporting exception handling (EH) is to discover the appropriate catch 
clause to handle the thrown exception. This requires an implementation to somehow keep track of the active 
area of each function on the program stack (including keeping track of the local class objects active at that 
point in the function). Also, the implementation must provide some method of querying the exception object 
as to its actual type (this leads directly to some form of runtime type identification (RTTI)). Finally, there 
needs to be some mechanism for the management of the object thrown—its creation, storage, possible 
destruction (if it has an associated destructor), clean up, and general access. (There also may be multiple 
objects active at one time.) In general, the EH mechanism requires a tightly coupled handshake between 
compiler-generated data structures and a runtime exception library. The implementation tradeoff is between 
program size versus the runtime speed of the program when no exception is being handled: 

To maintain execution speed, the compiler can build up the supporting data structures during 
compilation. This adds to the size of the program, but means the compiler can largely ignore these 
structures until an exception is thrown. 

To maintain program size, the compiler can build up the supporting data structures "on the fly" as 
each function is executed. This affects the speed of the program but means the compiler needs to build
(and then can discard) the data structures only as they are needed. 

According to [CHASE94], the Modula-3 Report has actually "institutionalized" a preference for maintaining 
execution speed at the expense of program size by recommending "that 10,000 instructions may be spent in 
the exceptional case to save one instruction in the normal case." That tradeoff is not universal, however. At a 
recent conference in Tel Aviv, I was speaking with Shay Bushinsky, one of the developers of "Junior," a chess 
program that tied for third place with IBM's "Deep Blue" in the winter 1994 world computer chess 
championship. Surprisingly, the program runs on a Pentium-based personal computer (Deep Blue uses 256 
processors). He told me that when they recompiled it under the version of the Borland compiler that 
incorporated EH, it no longer fit in available memory even though nothing in the program changed. As a 
result, they had to fall back to an earlier version of the compiler. For "Junior," a bigger but noninvasive 
runtime program is not an option. (Nor, on the other hand, would the runtime impact of building up the data 
structures on the fly likely be acceptable. Support for EH brings with it additional overhead whether or not an 
exception is thrown.) 

It is also worth noting (in passing) that EH literally killed off cfront. It is simply not possible to provide an 
acceptably robust EH mechanism without the support of the code generator (and linker). The UNIX Software 
Laboratory (USL) sat on the C-generating implementation of EH delivered by Hewlett-Packard for over a year 
(see [LENKOV92] for a discussion of their portable implementation and its performance). USL finally threw up 
its collective hands and canceled plans for a Release 4.0 and for any further development of cfront. 
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A Quick Review of Exception Handling 

Exception handling under C++ consists of the following three main syntactic components: 

1. A throw clause. A throw clause raises an exception at some point within the program. The exception 
thrown can be of a built-in or user-defined type. 

2. One or more catch clauses. Each catch clause is the exception handler. It indicates a type of exception
the clause is prepared to handle and gives the actual handler code enclosed in braces. 

3. A try block. A try block surrounds a sequence of statements for which an associated set of catch 
clauses is active. 

When an exception is thrown, control passes up the function call sequence until either an appropriate catch 
clause is matched or main() is reached without a handler's being found, at which point the default handler, 
terminate(), is invoked. As control passes up the call sequence, each function in turn is popped from the 
program stack (this process is called unwinding the stack). Prior to the popping of each function, the 
destructors of the function's local class objects are invoked. 

What is slightly nonintuitive about EH is the impact it has on functions that seemingly have nothing to do with
exceptions. For example, consider the following: 

1. Point*  
2. mumble()  
3. {  
4.    Point *pt1, *pt2;  
5.    pt1 = foo();  
6.    if ( !pt1 )  
7.      return 0;  
8.  
9.    Point p;  
10.  
11.   pt2 = foo();  
12.   if ( !pt2 )  
13.       return pt1;  
14.  
15.      ...  
16 }  

If an exception is thrown within the first call of foo() (line 5), then the function can simply be popped from 
the program stack. The statement is not within a try block, so there is no need to attempt to match up with a
catch clause; nor are there any local class objects requiring destruction. If an exception is thrown within the 
second call of foo() (line 11), however, then the EH mechanism must invoke the destructor for p before 
unwinding the function from the program stack. 

Under EH, that is, lines 4–8 and lines 9–16 are viewed as semantically distinct regions of the function with 
differing runtime semantics should an exception be thrown. Moreover, EH support requires additional 
bookkeeping. An implementation could either associate the two regions with separate lists of local objects to 
be destroyed (these would be set up at compile time) or share a single list that is added to and shrunk 
dynamically at runtime. 

On the programmer level, EH also alters the semantics of functions that manage resources. The following 
function includes, for example, both a locking and unlocking of a shared memory region and is no longer 
guaranteed to run correctly under EH even though it seemingly has nothing to do with exceptions: 

void  
mumble( void *arena )  
{  
   Point *p = new Point;  
   smLock( arena ); // function call  
 
   // problem if an exception is thrown here  
   // ...  
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   smUnLock( arena ); // function call  
   delete p;  
}  

In this case, the EH facility views the entire function as a single region requiring no processing other than 
unwinding the function from the program stack. Semantically, however, we need to both unlock shared 
memory and delete p prior to the function being popped. The most straightforward (if not the most effective) 
method of making the function "exception proof" is to insert a default catch clause, as follows: 

void  
mumble( void *arena )  
{  
   Point *p;  
   p = new Point;  
   try {  
      smLock( arena );  
      // ...  
   }  
   catch ( ... ) {  
      smUnLock( arena );  
      delete p;  
      throw;  
   }  
 
   smUnLock( arena );  
   delete p;  
}  

The function now has two regions: 

1. The region outside the try block for which there is nothing for the EH mechanism to do except pop the 
program stack 

2. The region within the try block (and its associated default catch clause) 

Notice that the invocation of operator new is not within the try block. Is this an error on my part? If either 
operator new or the Point constructor invoked after the allocation of memory should throw an exception, 
neither the unlocking of memory nor the deletion of p following the catch clause is invoked. Is this the 
correct semantics? 

Yes, it is. If operator new throws an exception, memory from the heap would not have been allocated and 
the Point constructor would not have been invoked. So, there would be no reason to invoke operator delete. 
If, however, the exception were thrown within the Point constructor following allocation from the heap, any 
constructed composite or subobject within Point (that is, a member class or base class object) would 
automatically be destructed and then the heap memory freed. In either case, there is no need to invoke 
operator delete. (I revisit this at the end of this section.) 

Similarly, if an exception were thrown during the processing of operator new, the shared memory segment 
addressed by arena would never have become locked; therefore, there would be no need to unlock it. 

The recommended idiom for handling these sorts of resource management is to encapsulate the resource 
acquisition within a class object, the destructor of which frees the resource (this style becomes cumbersome, 
however, when resources need to be acquired, released, then reacquired and released a second or 
subsequent times): 

void  
mumble( void *arena )  
{  
   auto_ptr <Point> ph ( new Point );  
   SMLock sm( arena );  
 
   // no problem now if an exception is thrown here  
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   // ...  
 
   // no need to explicitly unlock & delete  
   // local destructors invoked here  
   // sm.SMLock::~SMLock();  
   // ph.auto_ptr <Point>::~auto_ptr <Point> ()  
}  

The function now has three regions with regard to EH: 

1. One in which the standard auto_ptr is defined 

2. One in which the SMLock is defined 

3. One that follows the two definitions and spans the entire function 

If an exception is thrown within the auto_ptr constructor, there are no active local objects for the EH 
mechanism to destroy. If, however, an exception is thrown within the SMLock constructor, the auto_ptr 
object must be destroyed prior to the unwinding of the program stack. Within the third region, of course, 
both local objects must be destroyed. 

EH support complicates the constructors of classes with member class and base class subobjects with 
constructors. A class that is partially constructed must apply the destructors for only these subobjects and/or 
member objects that have been constructed. For example, if a class X has member objects A, B, and C, each 
with a constructor/destructor pair, then if A's constructor throws an exception, neither A, B, nor C needs its 
destructor invoked. If B's constructor throws an exception, A's destructor needs to be invoked, but not C's. 
Providing for all these contingencies is the compiler's responsibility. 

Similarly, if the programmer writes 

// class Point3d : public Point2d { ... };  
Point3d *cvs = new Point3d[ 512 ];  

this is what happens: 

1. Memory is allocated for the 512 Point3d objects from the heap. 

2. If (1) succeeds, the Point2d constructor then Point3d constructor is applied on each element in turn. 

What if the Point3d constructor for element 27 throws an exception? For element 27, only the Point2d 
destructor needs to be applied. For the first 26 constructed elements, both the Point3d and Point2d 
destructors need to be applied. Then the memory allocated must be freed. 

Exception Handling Support 

When an exception is thrown, the compilation system must do the following: 

1. Examine the function in which the throw occurred. 

2. Determine if the throw occurred in a try block. 

3. If so, then the compilation system must compare the type of the exception against the type of each 
catch clause. 

4. If the types match, control must pass to the body of the catch clause. 

5. If either it is not within a try block or none of the catch clauses match, then the system must (a) 
destruct any active local objects, (b) unwind the current function from the stack, and (c) go to the 
next active function on the stack and repeat items 2–5. 
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Determine if the Throw Occurred within a try Block 

A function, recall, can be thought of as a set of regions: 

A region outside a try block with no active local objects 

A region outside a try block but with one or more active local objects requiring destruction 

A region within an active try block 

The compiler needs to mark off these regions and make these markings available to the runtime EH system. 
A predominant strategy for doing this is the construction of program counter-range tables. 

Recall that the program counter holds the address of the next program instruction to be executed. To mark 
off a region of the function within an active try block, the beginning and ending program counter value (or 
the beginning program counter value and its range value) can be stored in a table. 

When a throw occurs, the current program counter value is matched against the associated range table to 
determine whether the region active at the time is within a try block. If it is, the associated catch clauses 
need to be examined (we look at this in the next subsection). If the exception is not handled (or if it is 
rethrown), the current function is popped from the program stack and the value of the program counter is 
restored to the value of the call site and the cycle begins again. 

Compare the Type of the Exception against the Type of Each Catch Clause 

For each throw expression, the compiler must create a type descriptor encoding the type of the exception. If 
the type is a derived type, the encoding must include information on all of its base class types. (It's not 
enough to simply encode the public base class types because the exception could be caught by a member 
function; within the scope of a member function, conversion between a derived and nonpublic base class is 
permitted.) 

The type descriptor is necessary because the actual exception is handled at runtime when the object itself 
otherwise has no type information associated with it. RTTI is a necessary side effect of support for EH. (I look 
further at RTTI in Section 7.3.) 

The compiler must also generate a type descriptor for each catch clause. The runtime exception handler 
compares the type descriptor of the object thrown with that of each catch clause's type descriptor until either
a match is found or the stack has been unwound and terminate() invoked. 

An exception table is generated for each function. It describes the regions associated with the function, the 
location of any necessary cleanup code (invocation of local class object destructors), and the location of 
catch clauses if a region is within an active try block. 

What Happens When an Actual Object Is Thrown during Program Execution? 

When an exception is thrown, the exception object is created and placed generally on some form of exception 
data stack. Propagated from the throw site to each catch clause are the address of the exception object, the 
type descriptor (or the address of a function that returns the type descriptor object associated with the 
exception type), and possibly the address of the destructor for the exception object, if one if defined. 

Consider a catch clause of the form 

catch( exPoint p )  
{  
   // do something  
   throw;  
}  

and an exception object of type exVertex derived from exPoint. The two types match and the catch clause 
block becomes active. What happens with p? 
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p is initialized by value with the exception object the same as if it were a formal argument of a 
function. This means a copy constructor and destructor, if defined or synthesized by the compiler, are 
applied to the local copy. 

Because p is an object and not a reference, the non-exPoint portion of the exception object is sliced off
when the values are copied. In addition, if virtual functions are provided for the exception hierarchy, 
the vptr of p is set to exPoint's virtual table; the exception object's vptr is not copied. 

What happens when the exception is rethrown? Is p now the object propagated or the exception object 
originally generated at the throw site? p is a local object destroyed at the close of the catch clause. Throwing 
p would require the generation of another temporary. It also would mean losing the exVertex portion of the 
original exception. The original exception object is rethrown; any modifications to p are discarded. 

A catch clause of the form 

catch( exPoint &rp )  
{  
   // do something  
   throw;  
}  

refers to the actual exception object. Any virtual invocations resolve to the instances active for exVertex, the 
actual type of the exception object. Any changes made to the object are propagated to the next catch 
clause. 

Finally, here is an interesting puzzle. If we have the following throw expression: 

exVertex errVer;  
 
// ...  
mumble()  
{  
   // ...  
   if ( mumble_cond ) {  
      errVer.fileName( "mumble()" );  
      throw errVer;  
   }  
   // ...  
}  

Is the actual exception errVer propagated or is a copy of errVer constructed on the exception stack and 
propagated? A copy is constructed; the global errVer is not propagated. This means that any changes made 
to the exception object within a catch clause are local to the copy and are not reflected within errVer. The 
actual exception object is destroyed only after the evaluation of a catch clause that does not rethrow the 
exception. 

In a review of C++ compilers for the PC (see [HORST95]), Cay Horstmann measured the performance and 
size overhead introduced by EH. In one case, Cay compiled and ran a test case that created and destroyed a 
large number of local objects that have associated constructors and destructors. No actual exceptions 
occurred, and the difference in the two programs was the presence of a single catch(...)within main(). 
Here is a summary of his measurements for the Microsoft, Borland, and Symantec compilers. First, the 
difference in program size as a result of the presence of the catch clause: 

Second, the difference in execution speed as a result of the presence of the catch clause: 

Table 7.1. Object Size with and without Exception Handling 

 w/o EH w/EH % 

Borland 86,822 89,510 3% 

Microsoft 60,146 67,071 13% 

Symantec 69,786 74,826 8% 
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EH implementations within C++ compilers vary the most when compared with support of other language 
features. In part this is because of its runtime nature and reliance on the underlying hardware and the 
different priorities of the UNIX and PC platforms in terms of execution speed and program size. 

Table 7.2. Execution Speed with and without Exception Handling 

 w/o EH w/EH % 

Borland 78 sec 83 sec 6% 

Microsoft 83 sec 87 sec 5% 

Symantec 94 sec 96 sec 4% 

Ru-Brd  

Ru-Brd  

7.3 Runtime Type Identification 

In cfront, a portion of the internal type hierarchy to represent programs looks as follows: 

// the root class of the program hierarchy  
class node { ... };  
 
// root of the `type' subtree: basic types,  
//   `derived' types: pointers, arrays,  
//    functions, classes, enums ...  
class type : public node { ... };  
 
// the class representation  
class classdef : public type { ... };  
 
// two representations for functions  
class fct : public type { ... };  
class gen : public type { ... };  

where gen is short for generic and represents an overloaded function. 

Thus whenever one had a variable or member of type type* and knew it represented a function, one still had
to determine whether its specific derived type was a fct or gen. Except in one particular instance. (Or at least 
one particular instance for one particular span of time.) The only category of function (apart from the 
destructor) prior to Release 2.0 that could not be overloaded was that of the conversion operator, such as 

class String {  
public:  
   operator char*();  
   // ...  
};  

Prior to the introduction of const member functions in Release 2.0, conversion operators could not be 
overloaded because they do not take arguments. This changed with the introduction of const member 
functions. Declarations such as the following were now possible: 

class String {  
public:  
   // ok with Release 2.0  
   operator char*();  
   operator char*() const;  
   // ...  
};  

That is, prior to the internal version of Release 2.0 supporting const member functions, it was always safe 
(and faster) to short-circuit access of the derived object by an explicit cast, such as the following: 

typedef type *ptype;  
typedef fct *pfct;  
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simplify_conv_op( ptype pt )  
{  
   // ok: conversion operators can only be fcts  
   pfct pf = pfct( pt );  
   // ...  
}  

This code is then tested and correct prior to the introduction of const member functions. Notice that there is 
even a programmer comment documenting the safety of the cast. Subsequent to the introduction of const 
member functions, both the comment and code are no longer correct. This code fails miserably with the 
revised String class declaration, since the char* conversion operator is now stored internally as a gen and 
not a fct. 

A cast of the form 

pfct pf = pfct( pt );  

is called a downcast because it effectively casts a base class down its inheritance hierarchy, thus forcing it 
into one of its more specialized derived classes. Downcasts are potentially dangerous because they 
circumvent the type system and if incorrectly applied may misinterpret (if it's a read operation) or corrupt 
program memory (if it's a write operation). In our example, a pointer to a gen object is incorrectly cast to a 
pointer to a fct object, pf. All subsequent use of pf in our program is incorrect, except for a test of whether 
it is 0 or for a comparison against another pointer. 

Introducing a Type-Safe Downcast 

One criticism of C++ had been its lack of support for a type-safe downcast mechanism—one that performs 
the downcast only if the actual type being cast is appropriate (see [BUDD91] for this and other sober 
criticisms of C++). A type-safe downcast requires a runtime query of the pointer as to the actual type of the 
object it addresses. Thus support for a type-safe downcast mechanism brings with it both space and 
execution time overhead: 

It requires additional space to store type information, usually a pointer to some type information node. 

It requires additional time to determine the runtime type, since, as the name makes explicit, the 
determination can be done only at runtime. 

What would such a mechanism do to the size, the performance, and the link compatibility of such common C 
constructs as the following? 

char *winnie_tbl[] = { "rumbly in my tummy", "oh, bother" }; 

Obviously, there would be a considerable space and efficiency penalty placed on programs that made no use 
of the facility. 

The conflict, then, is between two sets of users: 

1. Programmers who use polymorphism heavily and who therefore have a legitimate need for a type-safe 
downcast mechanism 

2. Programmers who use the built-in data types and nonpolymorphic facilities and who therefore have a 
legitimate need not to be penalized with the overhead of a mechanism that does not come into play in 
their code 

The solution is to provide for the legitimate needs of both parties, although perhaps at the expense of a 
"pure" design elegance. Do you see how that might be done? 

The C++ RTTI mechanism provides a type-safe downcast facility but only for those types exhibiting 
polymorphism (those that make use of inheritance and dynamic binding). How does one recognize this? How 
can a compiler look at a class definition and determine whether this class represents an independent ADT or 
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an inheritable subtype supporting polymorphism? One strategy, of course, is to introduce a new keyword. 
This has the advantage of clearly identifying types that support the new feature and the disadvantage of 
having to retrofit the keyword into older programs. 

An alternative strategy is to distinguish between class declarations by the presence of one or more declared 
or inherited virtual functions. This has the advantage of transparently transforming existing programs that 
are recompiled. It has the disadvantage of possibly forcing the introduction of an otherwise unnecessary 
virtual function into the base class of an inheritance hierarchy. No doubt you can think of a number of 
additional strategies. This latter strategy, however, is the one supported by the RTTI mechanism. Within 
C++, a polymorphic class is one that contains either an inherited or declared virtual function. 

From an implementation viewpoint, this strategy has the additional advantage of significantly minimizing 
overhead. All class objects of polymorphic classes already maintain a pointer to the virtual function table (the 
vptr). By our placing the address of the class-specific RTTI object within the virtual table (usually in the first 
slot), the additional overhead is reduced to one pointer per class (plus the type information object itself) 
rather than one pointer per class object. In addition, the pointer need be set only once. Also, it can be set 
statically by the compiler, rather than during runtime within the class construction as is done with the vptr. 

A Type-Safe Dynamic Cast 

The dynamic_cast operator determines at runtime the actual type being addressed. If the downcast is safe 
(that is, if the base type pointer actually addresses an object of the derived class), the operator returns the 
appropriately cast pointer. If the downcast is not safe, the operator returns 0. For example, following is how 
we might rewrite our original cfront downcast. (Of course, now that the actual type of pt can be either a fct 
or a gen, the preferred programming method is a virtual function. In this way, the actual type of the 
argument is encapsulated. The program is both clearer and more easily extended to handle additional types.) 

typedef type *ptype;  
typedef fct *pfct;  
simplify_conv_op( ptype pt )  
{  
   if ( pfct pf = dynamic_cast< pfct >( pt )) {  
      // ... process pf  
   }  
   else { ... }  
}  

What is the actual cost of the dynamic_cast operation? A type descriptor of pfct is generated by the 
compiler. The type descriptor for the class object addressed by pt must be retrieved at runtime; it's retrieval 
goes through the vptr. Here is a likely transformation: 

// access of type descriptor for pt  
((type_info*) (pt->vptr[ 0 ]))->_type_descriptor;  

type_info is the name of the class defined by the Standard to hold the required runtime type information. The 
first slot of the virtual table contains the address of the type_info object associated with the class type 
addressed by pt (see Section 1.1, Figure 1.3). The two type descriptors are passed to a runtime library 
routine that compares them and returns a match or no-match result. Obviously, this is considerably more 
expensive than a static cast, but considerably less so than an incorrect downcast such as our down-casting a 
type to a fct when it really addresses a gen. 

Originally, the proposed support for a runtime cast did not introduce any new keywords or additional syntax. 
The cast 

// original proposed syntax for run-time cast  
pfct pf = pfct( pt );  

was either static or dynamic depending on whether pt addressed a polymorphic class object. The gang of us 
at Bell Laboratories (back then, anyway) thought this was wonderful, but the Standards committee thought 
otherwise. Their criticism, as I understand it, was that an expensive runtime operation looks exactly the same
as a simple static cast. That is, there is no way to know, when looking at the cast, whether pt addresses a 
polymorphic object and therefore whether the cast is performed at compile time or runtime. This is true, of 
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course. However, the same can be said about a virtual function call. Perhaps the committee should also have 
introduced a new syntax and keyword to distinguish 

pt->foobar();  

as a statically resolved function call from its invocation through the virtual mechanism. 

References Are Not Pointers 

The dynamic_cast of a class pointer type provides a true/false pair of alternative pathways during program 
execution: 

A return of an actual address means the dynamic type of the object is confirmed and type-dependent 
actions may proceed. 

A return of 0, the universal address of no object, means alternative logic can be applied to an object of 
uncertain dynamic type. 

The dynamic_cast operator can also be applied to a reference. The result of a non–type-safe cast, however, 
cannot be the same as for a pointer. Why? A reference cannot refer to "no object" the way a pointer does by 
having its value be set to 0. Initializing a reference with 0 causes a temporary of the referenced type to be 
generated. This temporary is initialized with 0. The reference is then initialized to alias the temporary. Thus 
the dynamic_cast operator, when applied to a reference, cannot provide an equivalent true/false pair of 
alternative pathways as it does with a pointer. Rather, the following occurs: 

If the reference is actually referring to the appropriate derived class or an object of a class 
subsequently derived from that class, the downcast is performed and the program may proceed. 

If the reference is not actually a kind of the derived class, then because returning 0 is not viable, a 
bad_cast exception is thrown. 

Here is our simplify_conv_op() function reimplemented with a reference argument: 

simplify_conv_op( const type &rt )  
{  
    try {  
      fct &rf = dynamic_cast< fct& >( rt );  
      // ...  
    }  
    catch( bad_cast ) {  
      // ... mumble ...  
    }  
}  

where the action to perform ideally indicates some sort of exceptional failure rather than simply a flow-of-
control transfer. 

Typeid Operator 

It is possible to achieve the same runtime "alternative pathway" behavior with a reference by using the 
typeid operator: 

simplify_conv_op( const type &rt )  
{  
   if ( typeid( rt ) == typeid( fct ))  
   {  
      fct &rf = static_cast< fct& >( rt );  
      // ...  
   }  
   else { ... }  
}  

Page 179 of 182

22/08/2003file://C:\Documents%20and%20Settings\Mark\Local%20Setting...



although clearly at this point, the better implementation strategy is to introduce a virtual function common to 
both the gen and fct classes. 

The typeid operator returns a const reference of type type_info. In the previous test, the equality operator 
is an overloaded instance: 

bool  
type_info::  
operator==( const type_info& ) const;  

and returns true if the two type_info objects are the same. 

What does the type_info object consist of? The Standard (Section 18.5.1) defines the type_info class as 
follows: 

class type_info {  
public:  
   virtual ~type_info();  
   bool operator==( const type_info& ) const;  
   bool operator!=( const type_info& ) const;  
   bool before( const type_info& ) const;  
   const char* name() const;  
private:  
   // prevent memberwise init and copy  
   type_info( const type_info& );  
   type_info& operator=( const type_info& );  
 
   // data members  
};  

The minimum information an implementation needs to provide is the actual name of the class, some ordering 
algorithm between type_info objects (this is the purpose of the before() member function), and some form 
of type descriptor representing both the explicit class type and any subtypes of the class. In the original 
paper describing the EH mechanism (see [KOENIG90b]), a suggested type descriptor implementation is that 
of an encoded string. (For alternative strategies, see [SUN94a] and [LENKOV92].) 

While RTTI as provided by the type_info class is necessary for EH support, in practice it is insufficient to fully 
support EH. Additional derived type_info classes providing detailed information on pointers, functions, 
classes, and so on are provided under an EH mechanism. MetaWare, for example, defines the following 
additional classes: 

class Pointer_type_info: public type_info { ... };  
class Member_pointer_info: public type_info { ... };  
class Modified_type_info: public type_info { ... };  
class Array_type_info: public type_info { ... };  
class Func_type_info: public type_info { ... };  
class Class_type_info: public type_info { ... };  

and permits users to access them. Unfortunately, neither the naming conventions nor the extent of these 
derived classes is standardized, and they vary widely across implementations. 

Although I have said that RTTI is available only for polymorphic classes, in practice, type_info objects are 
also generated for both built-in and nonpolymorphic user-defined types. This is necessary for EH support. For 
example, consider 

int ex_errno;  
...  
throw ex_errno;  

where a type_info object supporting the int type is generated. Support for this spills over into user programs: 

int *ptr;  
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...  
if ( typeid( ptr ) == typeid( int* ))  
   ...  

Use of typeid( expression ) within a program, such as 

int ival;  
...  
typeid( ival ) ... ;  

or of typeid( type ), such as 

typeid( double ) ... ;  

returns a const type_info&. The difference between the use of typeid on a nonpolymorphic expression or 
type is that the type_info object is retrieved statically rather than at runtime. The general implementation 
strategy is to generate the type_info object on demand rather than at program outset. 
Ru-Brd  

Ru-Brd

7.4 Efficient, but Inflexible? 

The traditional C++ Object Model provides efficient runtime support of the object paradigm. This efficiency, 
together with its compatibility with C, are primary elements of the widespread popularity of C++. There are, 
however, certain domain areas—such as dynamically shared libraries, shared memory, and distributed 
objects—in which this object model has proved somewhat inflexible. 

Dynamic Shared Libraries 

Ideally, a new release of a dynamically linked shared library should just "drop in." That is, the next time an 
application is run, it transparently picks up the new library version. The library release is noninvasive in that 
the application does not need to be rebuilt. However, this noninvasive drop-in model breaks under the C++ 
Object Model if the data layout of a class object changes in the new library version. This is because the size of
the class and the offset location of each of its direct and inherited members is fixed at compile time (except 
for virtually inherited members). This results in efficient but inflexible binaries; a change in the object layout 
requires recompilation. Both [GOLD94] and [PALAY92] describe interesting efforts in pushing the C++ Object 
Model to provide increased drop-in support. Of course, the tradeoff is a loss of runtime speed and size 
efficiency. 

Shared Memory 

When a shared library is dynamically loaded, its placement in memory is handled by a runtime linker and 
generally is of no concern to the executing process. This is not true, however, under the C++ Object Model 
when a class object supported by a dynamically shared library and containing virtual functions is placed in 
shared memory. The problem is not with the process that is placing the object in shared memory but with a 
second or any subsequent process wanting to attach to and invoke a virtual function through the shared 
object. Unless the dynamic shared library is loaded at exactly the same memory location as the process that 
loaded the shared object, the virtual function invocation fails badly. The likely result is either a segment fault 
or bus error. The problem is caused by the hardcoding within the virtual table of each virtual function. The 
current solution is program-based. It is the programmer who must guarantee placement of the shared 
libraries across processes at the same locations. (On the SGI, the user can specify the exact placement of 
each shared library in what is called a so_location file.) A compilation system-based solution that preserves 
the efficiency of the virtual table implementation model is required. Whether that will be forthcoming is 
another issue. 

The Common Object Request Broker Architecture (CORBA), the Component (or Common) Object Model 
(COM), and the System Object Model (SOM) are (roughly) attempts to define distributed/binary object 
models that are language independent. (See [MOWBRAY95] for a detailed discussion of CORBA, plus 
secondary discussions of SOM and COM. For C++-oriented discussions, see [HAM95] (SOM), [BOX95] (COM), 
and [VINOS93] and [VINOS94] (CORBA).) These efforts may in the future push the C++ Object Model toward
greater flexibility (through additional levels of indirection) at the expense of runtime speed and size 
efficiency. 
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As the demands of our computing environment evolve (consider Web programming and the use of Java 
language applets), the traditional C++ Object Model, with its emphasis on efficiency and compatibility with C, 
may prove an increasing constraint on the Model's use. At this moment, however, the Object Model has 
accounted for the nearly universal applicability of C++ in fields as diverse as operating systems and device 
drivers to particle physics and the genome project as well as my own current field of 3D computer graphics 
and animation. 

Ru-Brd
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